166 research outputs found

    Viia-hand: a Reach-and-grasp Restoration System Integrating Voice interaction, Computer vision and Auditory feedback for Blind Amputees

    Full text link
    Visual feedback plays a crucial role in the process of amputation patients completing grasping in the field of prosthesis control. However, for blind and visually impaired (BVI) amputees, the loss of both visual and grasping abilities makes the "easy" reach-and-grasp task a feasible challenge. In this paper, we propose a novel multi-sensory prosthesis system helping BVI amputees with sensing, navigation and grasp operations. It combines modules of voice interaction, environmental perception, grasp guidance, collaborative control, and auditory/tactile feedback. In particular, the voice interaction module receives user instructions and invokes other functional modules according to the instructions. The environmental perception and grasp guidance module obtains environmental information through computer vision, and feedbacks the information to the user through auditory feedback modules (voice prompts and spatial sound sources) and tactile feedback modules (vibration stimulation). The prosthesis collaborative control module obtains the context information of the grasp guidance process and completes the collaborative control of grasp gestures and wrist angles of prosthesis in conjunction with the user's control intention in order to achieve stable grasp of various objects. This paper details a prototyping design (named viia-hand) and presents its preliminary experimental verification on healthy subjects completing specific reach-and-grasp tasks. Our results showed that, with the help of our new design, the subjects were able to achieve a precise reach and reliable grasp of the target objects in a relatively cluttered environment. Additionally, the system is extremely user-friendly, as users can quickly adapt to it with minimal training

    NUMERICAL STUDY ON PROPULSIVE FACTORS IN REGULAR HEAD AND OBLIQUE WAVES

    Get PDF
    This paper applies Reynolds-averaged Navier-Stokes (RANS) method to study propulsion performance in head and oblique waves. Finite volume method (FVM) is employed to discretize the governing equations and SST k-ω model is used for modeling the turbulent flow. The free surface is solved by volume of fluid (VOF) method. Sliding mesh technique is used to enable rotation of propeller. Propeller open water curves are determined by propeller open water simulations. Calm water resistance and wave added resistances are obtained from towing computations without propeller. Self-propulsion simulations in calm water and waves with varying loads are performed to obtain self-propulsion point and thrust identify method is use to predict propulsive factors. Regular head waves with wavelengths varying from 0.6 to 1.4 times the length of ship and oblique waves with incident directions varying from 0° to 360° are considered. The influence of waves on propulsive factors, including thrust deduction and wake fraction, open water, relative rotative, hull and propulsive efficiencies are discussed

    Volume Transfer: A New Design Concept for Fabric-Based Pneumatic Exosuits

    Full text link
    The fabric-based pneumatic exosuit is now a hot research topic because it is lighter and softer than traditional exoskeletons. Existing research focused more on the mechanical properties of the exosuit (e.g., torque and speed), but less on its wearability (e.g., appearance and comfort). This work presents a new design concept for fabric-based pneumatic exosuits Volume Transfer, which means transferring the volume of pneumatic actuators beyond the garments profile to the inside. This allows for a concealed appearance and a larger stress area while maintaining adequate torques. In order to verify this concept, we develop a fabric-based pneumatic exosuit for knee extension assistance. Its profile is only 26mm and its stress area wraps around almost half of the leg. We use a mathematical model and simulation to determine the parameters of the exosuit, avoiding multiple iterations of the prototype. Experiment results show that the exosuit can generate a torque of 7.6Nm at a pressure of 90kPa and produce a significant reduction in the electromyography activity of the knee extensor muscles. We believe that Volume Transfer could be utilized prevalently in future fabric-based pneumatic exosuit designs to achieve a significant improvement in wearability

    Ultrafast field-driven monochromatic photoemission from carbon nanotubes

    Full text link
    Ultrafast electron pulses, combined with laser-pump and electron-probe technologies, allow for various forms of ultrafast microscopy and spectroscopy to elucidate otherwise challenging to observe physical and chemical transitions. However, the pursuit of simultaneous ultimate spatial and temporal resolution has been largely subdued by the low monochromaticity of the electron pulses and their poor phase synchronization to the optical excitation pulses. State-of-the-art photon-driven sources have good monochromaticity but poor phase synchronization. In contrast, field-driven photoemission has much higher light phase synchronization, due to the intrinsic sub-cycle emission dynamics, but poor monochromaticity. Such sources suffer from larger electron energy spreads (3 - 100 eV) attributed to the relatively low field enhancement of the conventional metal tips which necessitates long pump wavelengths (> 800 nm) in order to gain sufficient ponderomotive potential to access the field-driven regime. In this work, field-driven photoemission from ~1 nm radius carbon nanotubes excited by a femtosecond laser at a short wavelength of 410 nm has been realized. The energy spread of field-driven electrons is effectively compressed to 0.25 eV outperforming all conventional ultrafast electron sources. Our new nanotube-based ultrafast electron source opens exciting prospects for attosecond imaging and emerging light-wave electronics

    Cardiac Shock Wave Therapy Attenuates Cardiomyocyte Apoptosis after Acute Myocardial Infarction in Rats

    Get PDF
    Background/Aims: Researches have showed that cardiac shock wave therapy (CSWT) could improve left ventricular function and attenuate LV remodeling of the ischemic heart. Apoptosis plays an important role in myocardial infarction and determines heart function and prognosis. However, it is still not clear whether CSWT is sufficient to attenuate acute myocardial infarction (AMI) induced cardiomyocyte apoptosis in vivo. In this study, we used a rat model to examine whether CSWT could attenuate cardiomyocyte apoptosis after AMI and to explore potential mechanisms. Methods: We generated an AMI rat model to investigate the function and possible regulatory mechanisms of CSWT. All rats were randomly divided into four groups: the sham-operated only group, sham-operated with SW treatment group, AMI only group, and AMI treated with SW treatment group.The rats were treated with a left anterior descending coronary artery ligation for 12h and then treated with or without CSWT (800 shots at 0.1 mJ/ mm2). Cytochrome c release was measured to analyze mitochondrial function and integrity. The apoptotic cell rate was determined by TUNEL assay. Western blot was used to analyze the cell apoptosis-, inflammation-, and survival-related signaling pathways. Results: First, the methodology of CSWT in the rat model of AMI was established. Second, CSWT attenuated the cardiomyocyte apoptosis rate in the infarct border zone. Third, CSWT suppressed the expression of apoptosis and inflammation molecules after AMI. Fourth, CSWT inhibited activation of the JNK pathway, which indicated inhibition of the cell inflammatory pathways and promotion of cardiomyocyte survival after AMI. Conclusion: These results indicate that CSWT exerts a protective effect against AMI-induced cardiomyocyte apoptosis, potentially by attenuating cytochrome c release from the mitochondria and inhibiting of the mitochondrial-dependent intrinsic apoptotic pathway. We also demonstrate that CSWT suppresses the JNK pathway and cardiomyocyte inflammation, which may also decrease cardiomyocyte apoptosis in vivo

    Genetic analysis of chikungunya viruses imported to mainland China in 2008

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chikungunya virus (CHIKV) has caused large outbreaks worldwide in recent years, especially on the islands of the Indian Ocean and India. The virus is transmitted by mosquitoes (<it>Aedes aegypti</it>), which are widespread in China, with an especially high population density in southern China. Analyses of full-length viral sequences revealed the acquisition of a single adaptive mutation providing a selective advantage for the transmission of CHIKV by this species. No outbreaks due to the local transmission of CHIKV have been reported in China, and no cases of importation were detected on mainland China before 2008. We followed the spread of imported CHIKV in southern China and analyzed the genetic character of the detected viruses to evaluate their potential for evolution.</p> <p>Results</p> <p>The importation of CHIKV to mainland China was first detected in 2008. The genomic sequences of four of the imported viruses were identified, and phylogenetic analysis demonstrated that the sequences were clustered in the Indian Ocean group; however, seven amino acid changes were detected in the nonstructural protein-coding region, and five amino acid changes were noted in the structural protein-coding regions. In particular, a novel substitution in E2 was detected (K252Q), which may impact the neurovirulence of CHIKV. The adaptive mutation A226V in E1 was observed in two imported cases of chikungunya disease.</p> <p>Conclusions</p> <p>Laboratory-confirmed CHIKV infections among travelers visiting China in 2008 were presented, new mutations in the viral nucleic acids and proteins may represent adaptive mutations for human or mosquito hosts.</p
    corecore