5,913 research outputs found

    Nuclear incompressibility using the density dependent M3Y effective interaction

    Full text link
    A density dependent M3Y effective nucleon-nucleon (NN) interaction which was based on the G-matrix elements of the Reid-Elliott NN potential has been used to determine the incompressibity of infinite nuclear matter. The nuclear interaction potential obtained by folding in the density distribution functions of two interacting nuclei with this density dependent M3Y effective interaction had been shown earlier to provide excellent descriptions for medium and high energy α\alpha and heavy ion elastic scatterings as well as α\alpha and heavy cluster radioactivities. The density dependent parameters have been chosen to reproduce the saturation energy per nucleon and the saturation density of spin and isospin symmetric cold infinite nuclear matter. The result of such calculations for nuclear incompressibility using the density dependent M3Y effective interaction based on the G-matrix elements of Reid-Elliott NN potential predicts a value of about 300 MeV for nuclear incompressibility.Comment: 4 Page

    Neutron transition strengths of 21+2^+_1 states in the neutron rich Oxygen isotopes determined from inelastic proton scattering

    Full text link
    A coupled-channel analysis of the 18,20,22^{18,20,22}O(p,p′)(p,p') data has been performed to determine the neutron transition strengths of 21+^+_1 states in Oxygen targets, using the microscopic optical potential and inelastic form factor calculated in the folding model. A complex density- and \emph{isospin} dependent version of the CDM3Y6 interaction was constructed, based on the Brueckner-Hatree-Fock calculation of nuclear matter, for the folding model input. Given an accurate isovector density dependence of the CDM3Y6 interaction, the isoscalar (δ0\delta_0) and isovector (δ1\delta_1) deformation lengths of 21+^+_1 states in 18,20,22^{18,20,22}O have been extracted from the folding model analysis of the (p,p′)(p,p') data. A specific NN-dependence of δ0\delta_0 and δ1\delta_1 has been established which can be linked to the neutron shell closure occurring at NN approaching 16. The strongest isovector deformation was found for 21+^+_1 state in 20^{20}O, with δ1\delta_1 about 2.5 times larger than δ0\delta_0, which indicates a strong core polarization by the valence neutrons in 20^{20}O. The ratios of the neutron/proton transition matrix elements (Mn/MpM_n/M_p) determined for 21+^+_1 states in 18,20^{18,20}O have been compared to those deduced from the mirror symmetry, using the measured B(E2)B(E2) values of 21+^+_1 states in the proton rich 18^{18}Ne and 20^{20}Mg nuclei, to discuss the isospin impurity in the 21+2^+_1 excitation of the A=18,T=1A=18,T=1 and A=20,T=2A=20,T=2 isobars.Comment: Version accepted for publication in Physical Review

    Union Averaged Operators with Applications to Proximal Algorithms for Min-Convex Functions

    Full text link
    In this paper we introduce and study a class of structured set-valued operators which we call union averaged nonexpansive. At each point in their domain, the value of such an operator can be expressed as a finite union of single-valued averaged nonexpansive operators. We investigate various structural properties of the class and show, in particular, that is closed under taking unions, convex combinations, and compositions, and that their fixed point iterations are locally convergent around strong fixed points. We then systematically apply our results to analyze proximal algorithms in situations where union averaged nonexpansive operators naturally arise. In particular, we consider the problem of minimizing the sum two functions where the first is convex and the second can be expressed as the minimum of finitely many convex functions

    Four complete genome sequences for Bradyrhizobium sp. strains isolated from an endemic Australian Acacia legume reveal structural variation

    Get PDF
    Bradyrhizobium sp. strains were isolated from root nodules of the Australian legume, Acacia acuminata (Fabaceae). Here, we report the complete genome sequences of four strains using a hybrid long- and short-read assembly approach. The genome sizes range between;7.1Mbp and;8.1Mbp, each with one single circular chromosome. Whole-genome alignments show extensive structural rearrangement

    Periodicity of ideals of minors in free resolutions

    Full text link
    We study the asymptotic behavior of the ideals of minors in minimal free resolutions over local rings. In particular, we prove that such ideals are eventually 2-periodic over complete intersections and Golod rings. We also establish general results on the stable behavior of ideals of minors in any infinite minimal free resolution. These ideals have intimate connections to trace ideals and cohomology annihilators. Constraints on the stable values attained by the ideals of minors in many situations are obtained, and they can be explicitly computed in certain cases.Comment: 28 page
    • …
    corecore