4 research outputs found

    Optimal capacitor placement and sizing via artificial bee colony

    Get PDF
    Abstract To achieve a more economical distribution system in the future, several methods have been introduced by researchers to accomplish that goal. Among the most commonly used method is to install the capacitors. It operates by supplying reactive power into the system to improve the performance of voltage, thereby reducing power losses. Nevertheless, the location and the size of the capacitor still issues to be resolved by the utilities. Various methods have been introduced to coordinate the capacitor without affect the performance of the distribution system. Basically, the most popular approach used to determine the location of capacitors is based on sensitivity analysis. This approach operates by placing the capacitor at each node in the system and selects the node that gives higher power losses reduction. Meanwhile, the size of capacitor is determined by using the optimization techniques in obtaining optimal values. However, calculation for both location and size in separate analysis could lead the solution trapped in local optimum. Therefore, this paper is investigated a solution to determine the location and size of capacitor simultaneously by using artificial bee colony (ABC). The effectiveness of proposed method is tested on 33-bus and 69-bus test system and compared with other methods. Based from the obtained results, simultaneous approach reduces the power losses by 34.29% and 35.44% for 33-bus and 69-bus test system, respectively. Moreover, the proposed method gives a better voltage improvement compared to the base case

    Implementation of module-based wind power system with pitch angle control

    No full text
    This paper presents a module approach for lab-scale wind power systems (WPS). The system is designed into functional modules. These modules can be used independently or in other projects. It is also convenient to handle and set up them on a small table in classrooms and labs. Hence, they are very useful for training and research. In addition, operation on both aerodynamic side and generator side is developed in this research. Many papers on wind system simulators focus only on aerodynamic system with pitch angle control or generator system with optimal control. Thus, the operation of WPS in 2 regions, which requires coordination of aerodynamic and generator sides, is not explained and demonstrated in previous study. Many case studies are conducted to demonstrate the capability of the module-based WPS. The system is capable of speed control, optimal power control and pitch angle control. As illustrated in experimental results, these control strategies can efficiently cooperate under operation in 2 regions of WPS

    Dynamic response evaluation of sensorless MPPT method for hybrid PV-DFIG wind turbine system

    No full text
    This research proposes a sensorless Maximum Power Point Tracking (MPPT) method for a hybrid Photovoltaic-Wind system, which consists of Photovoltaic (PV) system and Doubly-Fed Induction Generator (DFIG) Wind Turbine. In the hybrid system, the DC/DC converter output of the PV system is directly connected to the DC-link of DFIG’s back-to-back converter. Therefore, the PV inverter and its associated circuit can be removed in this structure. Typically, the PV power is monitored by using PV current sensor and PV voltage sensor for MPPT. In this paper, the powers of converters on grid side and rotor side of DFIG are used to estimate the PV power without the PV current sensor. That can efficiently reduce the cost of the hybrid system. The detailed analysis of the sensorless MPPT method, which includes derived equations and operation response, is also presented in this paper. In addition, an overview of PV-DFIG research in literature is stated to supply comprehensive knowledge of related research

    Optimal capacitor placement and sizing via artificial bee colony

    No full text
    To achieve a more economical distribution system in the future, several methods have been introduced by researchers to accomplish that goal. Among the most commonly used method is to install the capacitors. It operates by supplying reactive power into the system to improve the performance of voltage, thereby reducing power losses. Nevertheless, the location and the size of the capacitor still issues to be resolved by the utilities. Various methods have been introduced to coordinate the capacitor without affect the performance of the distribution system. Basically, the most popular approach used to determine the location of capacitors is based on sensitivity analysis. This approach operates by placing the capacitor at each node in the system and selects the node that gives higher power losses reduction. Meanwhile, the size of capacitor is determined by using the optimization techniques in obtaining optimal values. However, calculation for both location and size in separate analysis could lead the solution trapped in local optimum. Therefore, this paper is investigated a solution to determine the location and size of capacitor simultaneously by using artificial bee colony (ABC). The effectiveness of proposed method is tested on 33-bus and 69-bus test system and compared with other methods. Based from the obtained results, simultaneous approach reduces the power losses by 34.29% and 35.44% for 33-bus and 69-bus test system, respectively. Moreover, the proposed method gives a better voltage improvement compared to the base case
    corecore