48 research outputs found

    IL-4 and IL-13 mediated down-regulation of CD8 expression levels can dampen anti-viral CD8⁺ T cell avidity following HIV-1 recombinant pox viral vaccination

    No full text
    We have shown that mucosal HIV-1 recombinant pox viral vaccination can induce high, avidity HIV-specific CD8(+) T cells with reduced interleukin (IL)-4 and IL-13 expression compared to, systemic vaccine delivery. In the current study how these cytokines act to regulate anti-viral CD8(+) T, cell avidity following HIV-1 recombinant pox viral prime-boost vaccination was investigated. Out of a panel of T cell avidity markers tested, only CD8 expression levels were found to be enhanced on, KdGag197-205 (HIV)-specific CD8(+) T cells obtained from IL-13(-/-), IL-4(-/-) and signal transducer and, activator of transcription of 6 (STAT6)(-/-) mice compared to wild-type (WT) controls following, vaccination. Elevated CD8 expression levels in this instance also correlated with polyfunctionality, (interferon (IFN)-γ, tumour necorsis factor (TNF)-α and IL-2 production) and the avidity of HIVspecific CD8(+) T cells. Furthermore, mucosal vaccination and vaccination with the novel adjuvanted IL-13 inhibitor (i.e. IL-13Rα2) vaccines significantly enhanced CD8 expression levels on HIV-specific CD8(+), T cells, which correlated with avidity. Using anti-CD8 antibodies that blocked CD8 availability on CD8(+), T cells, it was established that CD8 played an important role in increasing HIV-specific CD8(+) T cell avidity and polyfunctionality in IL-4(-/-), IL-13(-/-) and STAT6(-/-) mice compared to WT controls, following vaccination. Collectively, our data demonstrate that IL-4 and IL-13 dampen CD8 expression levels on anti-viral CD8(+) T cells, which can down-regulate anti-viral CD8(+) T cell avidity and, polyfunctionality following HIV-1 recombinant pox viral vaccination. These findings can be exploited to, design more efficacious vaccines not only against HIV-1, but many chronic infections where high, avidity CD8(+) T cells help protection.This work was supported by the Australian National Health and Medical Research Council project grant award 525431 (CR) and development grant award APP1000703 (CR), the Australian Centre for Hepatitis and HIV Virology EOI grant 2010/12 (CR&RJ), and Bill and Melinda Gates Foundation GCE Phase I grant OPP1015149 (CR)

    MHC Class II–Alpha Chain Knockout Mice Support Increased Viral Replication That Is Independent of Their Lack of MHC Class II Cell Surface Expression and Associated Immune Function Deficiencies

    No full text
    MHCII molecules are heterodimeric cell surface proteins composed of an α and β chain. These molecules are almost exclusively expressed on thymic epithelium and antigen presenting cells (APCs) and play a central role in the development and function of CD4 T cells. Various MHC-II knockout mice have been generated including MHC-IIAα(-/-) (I-Aα(-/-)), MHC-IIAβ(-/-) (I-β(-/-)) and the double knockout (I-Aαxβ(-/-)). Here we report a very striking observation, namely that alphaviruses including the avirulent strain of Semliki Forest virus (aSFV), which causes asymptomatic infection in wild-type C57BL6/J (B6) mice, causes a very acute and lethal infection in I-Aα(-/-), but not in I-β(-/-) or I-Aαxβ(-/-), mice. This susceptibility to aSFV is associated with high virus titres in muscle, spleen, liver, and brain compared to B6 mice. In addition, I-Aα(-/-) mice show intact IFN-I responses in terms of IFN-I serum levels and IFN-I receptor expression and function. Radiation bone marrow chimeras of B6 mice reconstituted with I-Aα(-/-) bone marrow expressed B6 phenotype, whereas radiation chimeras of I-Aα(-/-) mice reconstituted with B6 bone marrow expressed the phenotype of high viral susceptibility. Virus replication experiments both in vivo and in vitro showed enhanced virus growth in tissues and cell cultures derived form I-Aα(-/-) compared to B6 mice. This enhanced virus replication is evident for other alpha-, flavi- and poxviruses and may be of great benefit to producers of viral vaccines. In conclusion, I-Aα(-/-) mice exhibit a striking susceptibility to virus infections independent of their defective MHC-II expression. Detailed genetic analysis will be carried out to characterise the underlining genetic defects responsible for the observed phenomenon.This work was supported by institutional research support to Prof Mullbacher laboratory at the John Curtin School of Medical Research. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Reduced Interleukin-4 Receptor α Expression on CD8+ T Cells Correlates with Higher Quality Anti-Viral Immunity

    No full text
    With the hope of understanding how interleukin (IL)-4 and IL-13 modulated quality of anti-viral CD8(+) T cells, we evaluated the expression of receptors for these cytokines following a range of viral infections (e.g. pox viruses and influenza virus). Results clearly indicated that unlike other IL-4/IL-13 receptor subunits, IL-4 receptor α (IL-4Rα) was significantly down-regulated on anti-viral CD8(+) T cells in a cognate antigen dependent manner. The infection of gene knockout mice and wild-type (WT) mice with vaccinia virus (VV) or VV expressing IL-4 confirmed that IL-4, IL-13 and signal transducer and activator of transcription 6 (STAT6) were required to increase IL-4Rα expression on CD8(+) T cells, but not interferon (IFN)-γ. STAT6 dependent elevation of IL-4Rα expression on CD8(+) T cells was a feature of poor quality anti-viral CD8(+) T cell immunity as measured by the production of IFN-γ and tumor necrosis factor α (TNF-α) in response to VV antigen stimulation in vitro. We propose that down-regulation of IL-4Rα, but not the other IL-4/IL-13 receptor subunits, is a mechanism by which CD8(+) T cells reduce responsiveness to IL-4 and IL-13. This can improve the quality of anti-viral CD8(+) T cell immunity. Our findings have important implications in understanding anti-viral CD8(+) T cell immunity and designing effective vaccines against chronic viral infections.This work was supported by the Australian National Health and Medical Research Council project grant award 525431 (CR) and development grant award APP1000703 (CR) and the Australian Centre for Hepatitis and HIV Virology EOI grant 2010 (CR). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Emerging targets for developing T cell-mediated vaccines for human immunodeficiency virus (HIV)-1

    Get PDF
    Human immunodeficiency virus (HIV)-1 has infected >75 million individuals globally, and, according to the UN, is responsible for ~2.1 million new infections and 1.1 million deaths each year. Currently, there are ~37 million individuals with HIV infection and the epidemic has already resulted in 35 million deaths. Despite the advances of anti-retroviral therapy (ART), a cost-effective vaccine remains the best long-term solution to end the HIV-1 epidemic especially given that the vast majority of infected individuals live in poor socio-economic regions of the world such as Sub-Saharan Africa which limits their accessibility to ART. The modest efficacy of the RV144 Thai trial provides hope that a vaccine for HIV-1 is possible, but as markers for sterilizing immunity are unknown, the design of an effective vaccine is empirical, although broadly cross-reactive neutralizing antibodies (bNAb) that can neutralize various quasispecies of HIV-1 are considered crucial. Since HIV-1 transmission often occurs at the genito-rectal mucosa and is cell-associated, there is a need to develop vaccines that can elicit CD8+ T cell immunity with the capacity to kill virus infected cells at the genito-rectal mucosa and the gut. Here we discuss the recent progress made in developing T cell-mediated vaccines for HIV-1 and emphasize the need to elicit mucosal tissue-resident memory CD8+ T (CD8+ Trm) cells. CD8+ Trm cells will likely form a robust front-line defense against HIV-1 and eliminate transmitter/founder virus-infected cells which are responsible for propagating HIV-1 infections following transmission in vast majority of cases.From the National Health and Medical Research Council (NHMRC): grants APP1026293 (EG), APP525431 (CR), APP543139 (EG), and APP543143 (EG). From the Australian Centre for HIV and Hepatitis Virology Research, CR received an EOI gran

    MHC class II-alpha chain knockout mice support increased viral replication that is independent of their lack of MHC class II cell surface expression and associated immune function deficiencies

    Get PDF
    MHCII molecules are heterodimeric cell surface proteins composed of an α and β chain. These molecules are almost exclusively expressed on thymic epithelium and antigen presenting cells (APCs) and play a central role in the development and function of CD4 T cells. Various MHC-II knockout mice have been generated including MHC-IIAα-/- (I-Aα-/-), MHC-IIAβ-/- (I-β-/-) and the double knockout (I-Aαxβ-/-). Here we report a very striking observation, namely that alphaviruses including the avirulent strain of Semliki Forest virus (aSFV), which causes asymptomatic infection in wild-type C57BL6/J (B6) mice, causes a very acute and lethal infection in I-Aα-/-, but not in I-β-/- or I-Aαxβ-/-, mice. This susceptibility to aSFV is associated with high virus titres in muscle, spleen, liver, and brain compared to B6 mice. In addition, I-Aα-/- mice show intact IFN-I responses in terms of IFN-I serum levels and IFN-I receptor expression and function. Radiation bone marrow chimeras of B6 mice reconstituted with I-Aα-/- bone marrow expressed B6 phenotype, whereas radiation chimeras of I-Aα-/- mice reconstituted with B6 bone marrow expressed the phenotype of high viral susceptibility. Virus replication experiments both in vivo and in vitro showed enhanced virus growth in tissues and cell cultures derived form I-Aα-/- compared to B6 mice. This enhanced virus replication is evident for other alpha-, flavi- and poxviruses and may be of great benefit to producers of viral vaccines. In conclusion, I-Aα-/- mice exhibit a striking susceptibility to virus infections independent of their defective MHC-II expression. Detailed genetic analysis will be carried out to characterise the underlining genetic defects responsible for the observed phenomenon.Mohammed Alsharifi, Aulikki Koskinen, Danushka K. Wijesundara, Jayaram Bettadapura, Arno Müllbache

    The use of fluorescent target arrays for assessment of T cell responses in vivo

    No full text
    The ability to monitor T cell responses in vivo is important for the development of our understanding of the immune response and the design of immunotherapies. Here we describe the use of fluorescent target array (FTA) technology, which utilizes vital dyes such as carboxyfluorescein succinimidyl ester (CFSE), violet laser excitable dyes (CellTrace Violet: CTV) and red laser excitable dyes (Cell Proliferation Dye eFluor 670: CPD) to combinatorially label mouse lymphocytes into > 250 discernable fluorescent cell clusters. Cell clusters within these FTAs can be pulsed with major histocompatibility (MHC) class-I and MHC class-II binding peptides and thereby act as target cells for CD8(+) and CD4(+) T cells, respectively. These FTA cells remain viable and fully functional, and can therefore be administered into mice to allow assessment of CD8(+) T cell-mediated killing of FTA target cells and CD4(+) T cell-meditated help of FTA B cell target cells in real time in vivo by flow cytometry. Since > 250 target cells can be assessed at once, the technique allows the monitoring of T cell responses against several antigen epitopes at several concentrations and in multiple replicates. As such, the technique can measure T cell responses at both a quantitative (e.g. the cumulative magnitude of the response) and a qualitative (e.g. functional avidity and epitope-cross reactivity of the response) level. Herein, we describe how these FTAs are constructed and give an example of how they can be applied to assess T cell responses induced by a recombinant pox virus vaccine

    Emerging Targets for Developing T Cell-Mediated Vaccines for Human Immunodeficiency Virus (HIV)-1

    Get PDF
    Human immunodeficiency virus (HIV)-1 has infected >75 million individuals globally, and, according to the UN, is responsible for ~2.1 million new infections and 1.1 million deaths each year. Currently, there are ~37 million individuals with HIV infection and the epidemic has already resulted in 35 million deaths. Despite the advances of anti-retroviral therapy (ART), a cost-effective vaccine remains the best long-term solution to end the HIV-1 epidemic especially given that the vast majority of infected individuals live in poor socio-economic regions of the world such as Sub-Saharan Africa which limits their accessibility to ART. The modest efficacy of the RV144 Thai trial provides hope that a vaccine for HIV-1 is possible, but as markers for sterilizing immunity are unknown, the design of an effective vaccine is empirical, although broadly cross-reactive neutralizing antibodies (bNAb) that can neutralize various quasispecies of HIV-1 are considered crucial. Since HIV-1 transmission often occurs at the genito-rectal mucosa and is cell-associated, there is a need to develop vaccines that can elicit CD8+ T cell immunity with the capacity to kill virus infected cells at the genito-rectal mucosa and the gut. Here we discuss the recent progress made in developing T cell-mediated vaccines for HIV-1 and emphasize the need to elicit mucosal tissue-resident memory CD8+ T (CD8+ Trm) cells. CD8+ Trm cells will likely form a robust front-line defense against HIV-1 and eliminate transmitter/founder virus-infected cells which are responsible for propagating HIV-1 infections following transmission in vast majority of cases

    Reduced interleukin-4 receptor α expression on CD8+ T cells correlates with higher quality anti-viral immunity.

    Get PDF
    With the hope of understanding how interleukin (IL)-4 and IL-13 modulated quality of anti-viral CD8(+) T cells, we evaluated the expression of receptors for these cytokines following a range of viral infections (e.g. pox viruses and influenza virus). Results clearly indicated that unlike other IL-4/IL-13 receptor subunits, IL-4 receptor α (IL-4Rα) was significantly down-regulated on anti-viral CD8(+) T cells in a cognate antigen dependent manner. The infection of gene knockout mice and wild-type (WT) mice with vaccinia virus (VV) or VV expressing IL-4 confirmed that IL-4, IL-13 and signal transducer and activator of transcription 6 (STAT6) were required to increase IL-4Rα expression on CD8(+) T cells, but not interferon (IFN)-γ. STAT6 dependent elevation of IL-4Rα expression on CD8(+) T cells was a feature of poor quality anti-viral CD8(+) T cell immunity as measured by the production of IFN-γ and tumor necrosis factor α (TNF-α) in response to VV antigen stimulation in vitro. We propose that down-regulation of IL-4Rα, but not the other IL-4/IL-13 receptor subunits, is a mechanism by which CD8(+) T cells reduce responsiveness to IL-4 and IL-13. This can improve the quality of anti-viral CD8(+) T cell immunity. Our findings have important implications in understanding anti-viral CD8(+) T cell immunity and designing effective vaccines against chronic viral infections

    Fear of Influenza Resurgence amid COVID-19 Pandemic: Need for Effective Flu Vaccine Still Exists

    No full text
    As influenza season was approaching in 2020, public health officials feared that influenza would worsen the COVID-19 situation [...
    corecore