18 research outputs found

    Drug mechanisms to help in managing resistant hypertension in obesity

    Get PDF
    Obesity is a major risk factor for the development of hypertension. Because the prevalence of obesity is increasing worldwide, the prevalence of obesity hypertension is also increasing. Importantly, hypertension in obesity is commonly complicated by dyslipidemia and type 2 diabetes mellitus and hence imposes a high cardiovascular disease risk. Furthermore, obesity is strongly associated with resistant hypertension. Activation of the sympathetic nervous system and the renin-angiotensin system, leading to renal sodium and water retention, links obesity with hypertension. There is also evidence for the release of factors by visceral adipose tissue promoting excessive aldosterone production, and a more central role of aldosterone in obesity hypertension is emerging. Randomized studies evaluating the effect of different classes of antihypertensive agents in obesity hypertension are scarce, short-lasting, and small. Considering the emerging role of aldosterone in the pathogenesis of obesity hypertension, mineralocorticoid receptor antagonism may play a more central role in the pharmacologic treatment of obesity hypertension in the near future

    Hypertension: Renin-Angiotensin-Aldosterone System Alterations

    Get PDF
    Blockers of the renin-angiotensin-aldosterone system (RAAS), that is, renin inhibitors, angiotensin (Ang)-converting enzyme (ACE) inhibitors, Ang II type 1 receptor antagonists, and mineralocorticoid receptor antagonists, are a cornerstone in the treatment of hypertension. How exactly they exert their effect, in particular in patients with low circulating RAAS activity, also taking into consideration the so-called Ang II/aldosterone escape that often occurs after initial blockade, is still incompletely understood. Multiple studies have tried to find parameters that predict the response to RAAS blockade, allowing a personalized treatment approach. Consequently, the question should now be answered on what basis (eg, sex, ethnicity, age, salt intake, baseline renin, ACE or aldosterone, and genetic variance) a RAAS blocker can be chosen to treat an individual patient. Are all blockers equal? Does optimal blockade imply maximum RAAS blockade, for example, by combining ≥2 RAAS blockers or by simply increasing the dose of 1 blocker? Exciting recent investigations reveal a range of unanticipated extrarenal effects of aldosterone, as well as a detailed insight in the genetic causes of primary aldosteronism, and mineralocorticoid receptor blockers have now become an important treatment option for resistant hypertension. Finally, apart from the deleterious ACE-Ang II-Ang II type 1 receptor arm, animal studies support the existence of protective aminopeptidase A-Ang III-Ang II type 2 receptor and ACE2-Ang-(1 to 7)-Mas receptor arms, paving the way for multiple new treatment options. This review provides an update about all these aspects, critically discussing the many controversies and allowing the reader to obtain a full understanding of what we currently know about RAAS alterations in hypertension

    Urinary markers of intrarenal renin-angiotensin system activity in vivo

    Get PDF
    Recent interest focuses on urinary renin and angiotensinogen as markers of renal renin-angiotensin system activity. Before concluding that these components are independent markers, we need to exclude that their presence in urine, like that of albumin (a protein of comparable size), is due to (disturbed) glomerular filtration. This review critically discusses their filtration, reabsorption and local release. Given the close correlation between urinary angiotensinogen and albumin in human studies, it concludes that, in humans, urinary angiotensinogen is a filtration barrier damage marker with the same predictive power as urinary albumin. In contrast, in animals, tubular angiotensinogen release may occur, although tubulus-specific knockout studies do not support a functional role for such angiotensinogen. Urinary renin levels, relative to albumin, are >200-fold higher and unrelated to albumin. This may reflect release of renin from the urinary tract, but could also be attributed to activation of filtered, plasma-derived prorenin and/or incomplete tubular reabsorption

    Prorenin periconceptionally and in pregnancy: Does it have a physiological role?

    Get PDF
    Pregnancy demands major cardiovascular, renal and endocrine changes to provide an adequate blood supply for the growing fetus. The renin-angiotensin-aldosterone system plays a key role in this adaptation process. One of its components, prorenin, is released in significant amounts from the ovary and uteroplacental unit. This review describes the sources of prorenin in the periconception period and in pregnancy, including its modulation by in-vitro fertilization protocols, and discusses its potential effects, among others focusing on preeclampsia. It ends with discussing the long-term consequences, even in later life, of inappropriate renin-angiotensin-aldosterone system activity in pregnancy and offers directions for future research. Ultimately, a full understanding of the role of prorenin periconceptionally and during pregnancy will help to develop tools to diagnose and/or prevent reproductive complications

    Transforming Growth Factor-β and the Renin-Angiotensin System in Syndromic Thoracic Aortic Aneurysms: Implications for Treatment

    Get PDF
    Thoracic aortic aneurysms (TAAs) are permanent pathological dilatations of the thoracic aorta, which can lead to life-threatening complications, such as aortic dissection and rupture. TAAs frequently occur in a syndromic form in individuals with an underlying genetic predisposition, such as Marfan syndrome (MFS) and Loeys-Dietz syndrome (LDS). Increasing evidence supports an important role for transforming growth factor-β (TGF-β) and the renin-angiotensin system (RAS) in TAA pathology. Eventually, most patients with syndromic TAAs require surgical intervention, as the ability of present medical treatment to attenuate aneurysm growth is limited. Therefore, more effective medical treatment options are urgently needed. Numerous clinical trials investigated the therapeutic potential of angiotensin receptor blockers (ARBs) and β-blockers in patients suffering from syndromic TAAs. This review highlights the contribution of TGF-β signaling, RAS, and impaired mechanosensing abilities of aortic VSMCs in TAA formation. Furthermore, it critically discusses the most recent clinical evidence regarding the possible therapeutic benefit of ARBs and β-blockers in syndromic TAA patients and provides future research perspectives and therapeutic implications

    Angiogenic markers during preeclampsia: Are they associated with hypertension 1 year postpartum?

    Get PDF
    Objectives: Preeclampsia is associated with hypertension in later life, but the underlying pathophysiological mechanisms remain uncertain. We aimed to explore whether the angiogenic markers soluble Fms-like tyrosine kinase-1 (sFlt-1) and placental growth factor (PlGF) measured in women with preeclampsia could be associated with hypertension 1 year after delivery. Methods: This is a secondary analysis of a prospective cohort study, originally aimed to evaluate the use of sFlt-1/PlGF ratio to predict adverse outcome in women with (suspected) preeclampsia. Office blood pressure (BP) was evaluated at 1 year postpartum in women who had a confirmed diagnosis of preeclampsia within one week of biomarker measurement. Results: Eighty women were included with a median (interquartile range) gestational age (GA) at biomarker measurement of 30 (27–33) weeks. Twenty-three (29%) women had hypertension 1 year postpartum. These women showed higher median SBP during their pregnancy and lower GA at PE diagnosis compared to women without hypertension. Median PlGF levels were lower in women with hypertension 1 year postpartum compared to women without hypertension (23 vs. 48 pg/mL, p = 0.017), while no differences in sFlt-1 or sFlt-1/PlGF ratio were observed. Multivariable analysis adjusted for GA did not show significant association between PlGF (nor sFlt-1, sFlt-1/PlGF ratio) and hypertension 1 yea

    PAPP-A2 and Inhibin A as Novel Predictors for Pregnancy Complications in Women With Suspected or Confirmed Preeclampsia

    Get PDF
    BACKGROUND: We aimed to evaluate the value of inhibin A and PAPP-A2 (pregnancy-associated plasma protein-A2) as novel biomarkers in the prediction of preeclampsia-related complications and how they compare with angiogenic biomarkers. METHODS AND RESULTS: Making use of a secondary analysis of a prospective, multicenter, observational study, intended to evaluate the usefulness of sFlt-1 (soluble Fms-like tyrosine kinase-1)/PlGF (placental growth factor) ratio, we measured inhibin A and PAPP-A2 levels in 524 women with suspected/confirmed preeclampsia. Women had a median gestational age of 35 weeks (range, 20–41 weeks) while preeclampsia occurred in 170 (32%) women. Levels of inhibin A and PAPP-A2 were significantly increased in women with preeclampsia and in maternal perfusate of preeclamptic placentas. Inhibin A and PAPP-A2 (C-index = 0.73 and 0.75) significantly improved the prediction of maternal complications when added on top of the traditional criteria; gestational age, parity, proteinuria, and diastolic blood pressure (C-index = 0.60). PAPP-A2 was able to improve the C-index from 0.75 to 0.77 when added on top of the sFlt-1/PlGF ratio for the prediction of maternal complications. To discriminate fetal/neonatal complications on top of traditional criteria, inhibin A and PAPP-A2 showed additive value (C-index = 0.79 to 0.80 and 0.82, respectively) but their discriminative ability remained inferior to that of sFlt-1/PlGF ratio or PlGF. Interestingly, the PAPP-A2/PlGF ratio alone showed remarkable value to predict pregnancy complications, being superior to sFlt-1/PlGF ratio in the case of maternal complications. CONCLUSIONS: Inhibin A and PAPP-A2 show significant potential to predict preeclampsia-related pregnancy complications and might prove beneficial on top of the angiogenic markers

    Multiple common comorbidities produce left ventricular diastolic dysfunction associated with coronary microvascular dysfunction, oxidative stress, and myocardial stiffening

    Get PDF
    Aims More than 50% of patients with heart failure have preserved ejection fraction characterized by diastolic dysfunction. The prevalance of diastolic dysfunction is higher in females and associates with multiple comorbidities such as hypertension (HT), obesity, hypercholesterolemia (HC), and diabetes mellitus (DM). Although its pathophysiology remains incompletely understood, it has been proposed that these comorbidities induce systemic inflammation, coronary microvascular dysfunction, and oxidative stress, leading to myocardial fibrosis, myocyte stiffening and, ultimately, diastolic dysfunction. Here, we tested this hypothesis in a swine model chronically exposed to three common comorbidities. Methods and results DM (induced by streptozotocin), HC (produced by high fat diet), and HT (resulting from renal artery embolization), were produced in 10 female swine, which were followed for 6 months. Eight female healthy swine on normal pig-chow served as controls. The DM + HC + HT group showed hyperglycemia, HC, hypertriglyceridemia, renal dysfunction and HT, which were associated with systemic inflammation. Myocardial superoxide production was markedly increased, due to increased NOX activity and eNOS uncoupling, and associated with reduced NO production, and impaired coronary small artery endothelium-dependent vasodilation. These abnormalities were accompanied by increased myocardial collagen content, reduced capillary/fiber ratio, and elevated passive cardiomyocyte stiffness, resulting in an increased left ventricular end-diastolic stiffness (measured by pressure-volume catheter) and a trend towards a reduced E/A ratio (measured by cardiac MRI), while ejection fraction was maintained. Conclusions The combination of three common comorbidities leads to systemic inflammation, myocardial oxidative stress, and coronary microvascular dysfunction, which associate with myocardial stiffening and LV diastolic dysfunction with preserved ejection fraction

    Human kidney organoids produce functional renin

    Get PDF
    Renin production by the kidney is of vital importance for salt, volume, and blood pressure homeostasis. The lack of human models hampers investigation into the regulation of renin and its relevance for kidney physiology. To develop such a model, we used human induced pluripotent stem cell–derived kidney organoids to study the role of renin and the renin-angiotensin system in the kidney. Extensive characterization of the kidney organoids revealed kidney-specific cell populations consisting of podocytes, proximal and distal tubular cells, stromal cells and endothelial cells. We examined the presence of various components of the renin-angiotensin system such as angiotensin II receptors, angiotensinogen, and angiotensin-converting enzymes 1 and 2. We identified by single-cell sequencing, immunohistochemistry, and functional assays that cyclic AMP stimulation induces a subset of pericytes to increase the synthesis and secretion of enzymatically active renin. Renin production by the organoids was responsive to regulation by parathyroid hormone. Subcutaneously implanted kidney organoids in immunodeficient IL2Ry-/-Rag2-/- mice were successfully vascularized, maintained tubular and glomerular structures, and retained capacity to produce renin two months after implantation. Thus, our results demonstrate that kidney organoids express renin and provide insights into the endocrine potential of human kidney organoids, which is important for regenerative medicine in the context of the endocrine system

    Characterization of binding, functional activity, and contractile responses of the selective 5-HT1F receptor agonist lasmiditan

    Get PDF
    Background and Purpose: Triptans are 5-HT1B/1D receptor agonists (that also display 5-HT1F receptor affinity) with antimigraine action, contraindicated in patients with coronary artery disease due to their vasoconstrictor properties. Conversely, lasmiditan was developed as an antimigraine 5-HT1F receptor agonist. To assess the selectivity and cardiovascular effects of lasmiditan, we investigated the binding, functional activity, and in vitro/in vivo vascular effects of lasmiditan and compared it to sumatriptan. Experimental Approach: Binding and second messenger activity assays of lasmiditan and other serotoninergic agonists were performed for human 5-HT1A, 5-HT1B, 5-HT1D, 5-ht1E, 5-HT1F, 5-HT2A, 5-HT2B, and 5-HT7 receptors, and the results were correlated with their potency to constrict isolated human coronary arteries (HCAs). Furthermore, concentration–response curves to lasmiditan and sumatriptan were performed in proximal and distal HCA, internal mammary, and middle meningeal arteries. Finally, anaesthetized female beagle dogs received i.v. infusions of lasmiditan or sumatriptan in escalating cumulative doses, and carotid and coronary artery diameters were measured. Key Results: Lasmiditan showed high selectivity for 5-HT1F receptors. Moreover, the functional potency of the analysed compounds to inhibit cAMP increase through 5-HT1B receptor activation positively correlated with their potency to contract HCA. In isolated human arteries, sumatriptan, but not lasmiditan, induced contractions. Likewise, in vivo, sumatriptan decreased coronary and carotid artery diameters at clinically relevant doses, while lasmiditan was devoid of vasoconstrictor activity at all doses tested. Conclusions and Implications: Lasmiditan is a selective 5-HT1F receptor agonist devoid of vasoconstrictor activity. This may represent a cardiovascular safety advantage when compared to the triptans
    corecore