43 research outputs found

    Assessment of Bias in Pan-Tropical Biomass Predictions

    Get PDF
    Above-ground biomass (AGB) is an essential descriptor of forests, of use in ecological and climate-related research. At tree- and stand-scale, destructive but direct measurements of AGB are replaced with predictions from allometric models characterizing the correlational relationship between AGB, and predictor variables including stem diameter, tree height and wood density. These models are constructed from harvested calibration data, usually via linear regression. Here, we assess systematic error in out-of-sample predictions of AGB introduced during measurement, compilation and modeling of in-sample calibration data. Various conventional bivariate and multivariate models are constructed from open access data of tropical forests. Metadata analysis, fit diagnostics and cross-validation results suggest several model misspecifications: chiefly, unaccounted for inconsistent measurement error in predictor variables between in- and out-of-sample data. Simulations demonstrate conservative inconsistencies can introduce significant bias into tree- and stand-scale AGB predictions. When tree height and wood density are included as predictors, models should be modified to correct for bias. Finally, we explore a fundamental assumption of conventional allometry, that model parameters are independent of tree size. That is, the same model can provide predictions of consistent trueness irrespective of size-class. Most observations in current calibration datasets are from smaller trees, meaning the existence of a size dependency would bias predictions for larger trees. We determine that detecting the absence or presence of a size dependency is currently prevented by model misspecifications and calibration data imbalances. We call for the collection of additional harvest data, specifically under-represented larger trees

    Longer and less overlapping food webs in anthropogenically disturbed marine ecosystems: confirmations from the past

    Get PDF
    The human exploitation of marine resources is characterised by the preferential removal of the largest species. Although this is expected to modify the structure of food webs, we have a relatively poor understanding of the potential consequences of such alteration. Here, we take advantage of a collection of ancient consumer tissues, using stable isotope analysis and SIBER to assess changes in the structure of coastal marine food webs in the South-western Atlantic through the second half of the Holocene as a result of the sequential exploitation of marine resources by hunter-gatherers, western sealers and modern fishermen. Samples were collected from shell middens and museums. Shells of both modern and archaeological intertidal herbivorous molluscs were used to reconstruct changes in the stable isotopic baseline, while modern and archaeological bones of the South American sea lion Otaria flavescens, South American fur seal Arctocephalus australis and Magellanic penguin Spheniscus magellanicus were used to analyse changes in the structure of the community of top predators. We found that ancient food webs were shorter, more redundant and more overlapping than current ones, both in northern-central Patagonia and southern Patagonia. These surprising results may be best explained by the huge impact of western sealing on pinnipeds during the fur trade period, rather than the impact of fishing on fish populations. As a consequence, the populations of pinnipeds at the end of the sealing period were likely well below the ecosystem's carrying capacity, which resulted in a release of intraspecific competition and a shift towards larger and higher trophic level prey. This in turn led to longer and less overlapping food webs

    Longer and less overlapping food webs in anthropogenically disturbed marine ecosystems: confirmations from the past

    Get PDF
    The human exploitation of marine resources is characterised by the preferential removal of the largest species. Although this is expected to modify the structure of food webs, we have a relatively poor understanding of the potential consequences of such alteration. Here, we take advantage of a collection of ancient consumer tissues, using stable isotope analysis and SIBER to assess changes in the structure of coastal marine food webs in the South-western Atlantic through the second half of the Holocene as a result of the sequential exploitation of marine resources by hunter-gatherers, western sealers and modern fishermen. Samples were collected from shell middens and museums. Shells of both modern and archaeological intertidal herbivorous molluscs were used to reconstruct changes in the stable isotopic baseline, while modern and archaeological bones of the South American sea lion Otaria flavescens, South American fur seal Arctocephalus australis and Magellanic penguin Spheniscus magellanicus were used to analyse changes in the structure of the community of top predators. We found that ancient food webs were shorter, more redundant and more overlapping than current ones, both in northern-central Patagonia and southern Patagonia. These surprising results may be best explained by the huge impact of western sealing on pinnipeds during the fur trade period, rather than the impact of fishing on fish populations. As a consequence, the populations of pinnipeds at the end of the sealing period were likely well below the ecosystem's carrying capacity, which resulted in a release of intraspecific competition and a shift towards larger and higher trophic level prey. This in turn led to longer and less overlapping food webs
    corecore