2 research outputs found
Enhance the Efficiency of Heuristic Algorithm for Maximizing Modularity Q
Modularity Q is an important function for identifying community structure in
complex networks. In this paper, we prove that the modularity maximization
problem is equivalent to a nonconvex quadratic programming problem. This result
provide us a simple way to improve the efficiency of heuristic algorithms for
maximizing modularity Q. Many numerical results demonstrate that it is very
effective.Comment: 9 pages, 3 figure
Improved community structure detection using a modified fine tuning strategy
The community structure of a complex network can be determined by finding the
partitioning of its nodes that maximizes modularity. Many of the proposed
algorithms for doing this work by recursively bisecting the network. We show
that this unduely constrains their results, leading to a bias in the size of
the communities they find and limiting their effectivness. To solve this
problem, we propose adding a step to the existing algorithms that does not
increase the order of their computational complexity. We show that, if this
step is combined with a commonly used method, the identified constraint and
resulting bias are removed, and its ability to find the optimal partitioning is
improved. The effectiveness of this combined algorithm is also demonstrated by
using it on real-world example networks. For a number of these examples, it
achieves the best results of any known algorithm.Comment: 6 pages, 3 figures, 1 tabl