1,056 research outputs found

    Intimacy and HIV/Aids

    Get PDF
    This paper addresses intimacy in relationships where HIV/AIDS exists. The authors explore what strengthens and strains relationships and review insights on promoting communication about intimacy. Therapist discomfort and attitudes that prevent effective therapeutic intervention are addressed to allow for the co-existence of HIV/AIDS and intimacy.For full text, click here:SA Fam Pract 2006;48(2):54-55

    Acute oral toxicity and phytochemical study of "Diabenorme" and "Thuquinone" used to treat diabetes

    Get PDF
    The aim of the study was conducted to search for phytochemicals and evaluate the acute oral toxicity in mice for aqueous extracts of "Diabenorme" and "Thuquinone" used in the treatment of diabetes. "Diabenorme" is a combination of two medicinal plants: Persea americana (Lauraceae) and Anacardium occidentale (Anacardiaceae) while "Thuquinone" is composed of Pycnanthus angolensis (Myristicaceae). Phytochemical analysis was done using standard methods and acute toxicity test (OCDE 423) was performed by a fixed dose procedure consist in administration of three doses of 300, 2000 and 5000 mg/kg body weight of "Diabenorme" and "Thuquinone". Phytochemical analysis showed that the different drugs contained polyphenols, flavonoids, catechin tannins, alkaloids and saponins. Concerning acute toxicity test, no sign of toxicity and mortality were observed during the experiment after limit test of 5000 mg/kg. Thus, there were no significant differences (Fischer test, P ˃ 0.05) in the body weights between the control and treated animals. These results show that the aqueous extracts of "Diabenorme" and "Thuquinone" are potentially safe for oral consumption at acute administration up to dose of 5000 mg/kg. Further investigation is needed to evaluate its sub-acute toxicity.Keywords: Diabenorme, Thuquinone, Phytochemical screening, acute toxicity

    Renforcement des sols alluvionnaires par injection de coulis de ciment ultrafin

    Get PDF
    L’injection d’un coulis de ciment ultrafin dans un terrain alluvionnaire constitue un traitement de terrain efficace qui permet de construire un ouvrage souterrain sans porter préjudice à l’intégrité structurelle du bâti existant. Afin de prendre en compte, d’une manière rationnelle, l’amélioration des propriétés mécaniques des sols apportée par l’injection, on a conduit une campagne d’essais triaxiaux sur des échantillons vierges de tout traitement puis sur des échantillons injectés en laboratoire. On montre comment l’injection de coulis influe sur le comportement mécanique des sols. On propose enfin des facteurs d’amélioration des paramètres du modèle élastique plastique parfait et la façon dont ils peuvent être intégrés dans les calculs d’ouvrages

    Experimental investigations and variability considerations on 3D interlock textile composites used in low velocity soft impact loading

    Get PDF
    This study investigates the performance of three-dimensional (3-D) woven interlock composite plates subjected to impact loading. Low velocity (lower than 10 m s 1) impacts with highly deformable rubber impactor are addressed. Response variability is investigated by conducting several impact tests in the same conditions. The effect of mass and velocity on damage tolerance is studied by varying the impact conditions. Force–time, displacement–time and force–displacement curves are first analyzed in such various impact conditions. Secondly, damage mechanisms are highlighted through microscopic observations. The large geometrical deformation of the rubber impactor during impact leads to a loading less localized than for a hard impactor which induces a wide spread damage distribution. Comments on the relations between damage states and mass–velocity conditions are proposed

    Investigation of damage mechanisms in 3D interlock textile composites under low velocity soft impact loading

    Get PDF
    Performances of a three-dimensional (3-D) woven composites subjected to impact loading are investigated in this study. Low velocity (lower than 10 m.s-1) impacts with largely deformable rubber impactors are adressed. Variability issues by performing repeated impact tests in the same conditions and the mass velocity effect on damage tolerance by varying the impact conditions are the main points of interest. Force-time and force-displacement curves and damage mechanisms observed on micrographies are particularly commented.AN

    Phenotypic Overlap between MMP-13 and the Plasminogen Activation System during Wound Healing in Mice

    Get PDF
    BACKGROUND: Proteolytic degradation of extracellular matrix is a crucial step in the healing of incisional skin wounds. Thus, healing of skin wounds is delayed by either plasminogen-deficiency or by treatment with the broad-spectrum metalloproteinase (MP) inhibitor Galardin alone, while the two perturbations combined completely prevent wound healing. Both urokinase-type plasminogen activator and several matrix metallo proteinases (MMPs), such as MMP-3, -9 and -13, are expressed in the leading-edge keratinocytes of skin wounds, which may account for this phenotypic overlap between these classes of proteases. METHODOLOGY: To further test that hypothesis we generated Mmp13;Plau and Mmp13;Plg double-deficient mice in a cross between Mmp13- and Plau-deficient mice as well as Mmp13- and Plg-deficient mice. These mice were examined for normal physiology in a large cohort study and in a well-characterized skin wound healing model, in which we made incisional 20 mm-long full-thickness skin wounds. PRINCIPAL FINDINGS: While mice that are deficient in Mmp13 have a mean healing time indistinguishable to wild-type mice, wound healing in both Plau- and Plg-deficient mice is significantly delayed. Histological analysis of healed wounds revealed a significant increase in keratin 10/14 immunoreactive layers of kerationcytes in the skin surface in Mmp13;Plau double-deficient mice. Furthermore, we observe, by immunohistological analysis, an aberrant angiogenic pattern during wound healing induced by Plau-deficiency, which has not previously been described. CONCLUSIONS: We demonstrate a phenotypic overlap, defined as an additional delay in wound healing in the double-deficient mice compared to the individual single-deficient mice, between MMP-13 and the plasminogen activation system in the process of wound healing, but not during gestation and in postnatal development. Thus, a dual targeting of uPA and MMP-13 might be a possible future strategy in designing therapies aimed at tissue repair or other pathological processes, such as cancer invasion, where proteolytic degradation is a hallmark

    Modeling the morphodynamics of coastal responses to extreme events: what shape are we in?

    Get PDF
    This paper is not subject to U.S. copyright. The definitive version was published in Sherwood, C. R., van Dongeren, A., Doyle, J., Hegermiller, C. A., Hsu, T.-J., Kalra, T. S., Olabarrieta, M., Penko, A. M., Rafati, Y., Roelvink, D., van der Lugt, M., Veeramony, J., & Warner, J. C. Modeling the morphodynamics of coastal responses to extreme events: what shape are we in? Annual Review of Marine Science, 14, (2022): 457–492, https://doi.org/10.1146/annurev-marine-032221-090215.This review focuses on recent advances in process-based numerical models of the impact of extreme storms on sandy coasts. Driven by larger-scale models of meteorology and hydrodynamics, these models simulate morphodynamics across the Sallenger storm-impact scale, including swash,collision, overwash, and inundation. Models are becoming both wider (as more processes are added) and deeper (as detailed physics replaces earlier parameterizations). Algorithms for wave-induced flows and sediment transport under shoaling waves are among the recent developments. Community and open-source models have become the norm. Observations of initial conditions (topography, land cover, and sediment characteristics) have become more detailed, and improvements in tropical cyclone and wave models provide forcing (winds, waves, surge, and upland flow) that is better resolved and more accurate, yielding commensurate improvements in model skill. We foresee that future storm-impact models will increasingly resolve individual waves, apply data assimilation, and be used in ensemble modeling modes to predict uncertainties.All authors except D.R. were partially supported by the IFMSIP project, funded by US Office of Naval Research grant PE 0601153N under contracts N00014-17-1-2459 (Deltares), N00014-18-1-2785 (University of Delaware), N0001419WX00733 (US Naval Research Laboratory, Monterey), N0001418WX01447 (US Naval Research Laboratory, Stennis Space Center), and N0001418IP00016 (US Geological Survey). C.R.S., C.A.H., T.S.K., and J.C.W. were supported by the US Geological Survey Coastal/Marine Hazards and Resources Program. A.v.D. and M.v.d.L. were supported by the Deltares Strategic Research project Quantifying Flood Hazards and Impacts. M.O. acknowledges support from National Science Foundation project OCE-1554892

    Evaluation of the collaborative network of highly correlating skin proteins and its change following treatment with glucocorticoids

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Glucocorticoids (GC) represent the core treatment modality for many inflammatory diseases. Its mode of action is difficult to grasp, not least because it includes direct modulation of many components of the extracellular matrix as well as complex anti-inflammatory effects. Protein expression profile of skin proteins is being changed with topical application of GC, however, the knowledge about singular markers in this regard is only patchy and collaboration is ill defined.</p> <p>Material/Methods</p> <p>Scar formation was observed under different doses of GC, which were locally applied on the back skin of mice (1 to 3 weeks). After euthanasia we analyzed protein expression of collagen I and III (picrosirius) in scar tissue together with 16 additional protein markers, which are involved in wound healing, with immunhistochemistry. For assessing GC's effect on co-expression we compared our results with a model of random figures to estimate how many significant correlations should be expected by chance.</p> <p>Results</p> <p>GC altered collagen and protein expression with distinct results in different areas of investigation. Most often we observed a reduced expression after application of low dose GC. In the scar infiltrate a multivariate analysis confirmed the significant impact of both GC concentrations. Calculation of Spearman's correlation coefficient similarly resulted in a significant impact of GC, and furthermore, offered the possibility to grasp the entire interactive profile in between all variables studied. The biological markers, which were connected by significant correlations could be arranged in a highly cross-linked network that involved most of the markers measured. A marker highly cross-linked with more than 3 significant correlations was indicated by a higher variation of all its correlations to the other variables, resulting in a standard deviation of > 0.2.</p> <p>Conclusion</p> <p>In addition to immunohistochemical analysis of single protein markers multivariate analysis of co-expressions by use of correlation coefficients reveals the complexity of biological relationships and identifies complex biological effects of GC on skin scarring. Depiction of collaborative clusters will help to understand functional pathways. The functional importance of highly cross-linked proteins will have to be proven in subsequent studies.</p
    • …
    corecore