4 research outputs found

    Evidence base for point-of-care ultrasound (POCUS) for diagnosis of skull fractures in children: A systematic review and meta-analysis

    Get PDF
    Background: Blunt head trauma is a common presentation to emergency departments (EDs). Identifying skull fractures in children is important as they are known factor of risk for traumatic brain injury (TBI). Currently, CT is the reference standard for diagnosing skull fractures and TBIs in children. Identifying skull fractures with point-of-care ultrasound (POCUS) may help risk-stratify children for TBI following blunt trauma. The purpose of this study is to evaluate the sensitivity, specificity, positive predictive value and negative predictive value of POCUS in identifying skull fractures in children. Methods: A systematic search was performed on 17 July 2020 in Ovid Medline, Cochrane Library, Google Scholar, Web of Science and Embase. Prospective studies reporting skull fractures diagnosed with ultrasound in children younger than 18 years due to blunt head injury were included. Studies that did not confirm the fracture with CT were excluded. The quality of studies was evaluated using the QUADAS-2 tool. Data were extracted from the eligible studies to calculate outcomes such as sensitivity and specificity; when possible overall outcomes were calculated. Results: Seven studies were included. All eligible studies included patients for whom the decision to perform a CT scan was made in advance. Overall, the included studies demonstrated low risk of bias or had minor concerns regarding risk of bias. The pooled data (n=925) demonstrated a sensitivity of 91%, specificity of 96%, positive predictive value of 88% and negative predictive value of 97%. Conclusion: The included studies demonstrate minor methodological limitations. Overall, the evidence suggests that POCUS is a valid option for diagnosing skull fractures in children visiting the ED after blunt head injury

    Evidence base for point-of-care ultrasound (POCUS) for diagnosis of skull fractures in children: A systematic review and meta-analysis

    Get PDF
    Background Blunt head trauma is a common presentation to emergency departments (EDs). Identifying skull fractures in children is important as they are known factor of risk for traumatic brain injury (TBI). Currently, CT is the reference standard for diagnosing skull fractures and TBIs in children. Identifying skull fractures with point-of-care ultrasound (POCUS) may help risk-stratify children for TBI following blunt trauma. The purpose of this study is to evaluate the sensitivity, specificity, positive predictive value and negative predictive value of POCUS in identifying skull fractures in children.  Methods A systematic search was performed on 17 July 2020 in Ovid Medline, Cochrane Library, Google Scholar, Web of Science and Embase. Prospective studies reporting skull fractures diagnosed with ultrasound in children younger than 18 years due to blunt head injury were included. Studies that did not confirm the fracture with CT were excluded. The quality of studies was evaluated using the QUADAS-2 tool. Data were extracted from the eligible studies to calculate outcomes such as sensitivity and specificity; when possible overall outcomes were calculated.  Results Seven studies were included. All eligible studies included patients for whom the decision to perform a CT scan was made in advance. Overall, the included studies demonstrated low risk of bias or had minor concerns regarding risk of bias. The pooled data (n=925) demonstrated a sensitivity of 91%, specificity of 96%, positive predictive value of 88% and negative predictive value of 97%.  Conclusion The included studies demonstrate minor methodological limitations. Overall, the evidence suggests that POCUS is a valid option for diagnosing skull fractures in children visiting the ED after blunt head injury

    Evaluation of nonalcoholic fatty liver disease (NAFLD) in severe obesity using noninvasive tests and imaging techniques

    No full text
    The prevalence of nonalcoholic fatty liver disease (NAFLD) and the more severe and inflammatory type, nonalcoholic steatohepatitis (NASH), is increasing rapidly. Especially in high-risk patients, that is those with obesity, metabolic syndrome, and type 2 diabetes mellitus, the prevalence of NAFLD can be as high as 80% while NASH may be present in 20% of these subjects. With the worldwide increase of obesity, it is most likely that these numbers will rise. Since advanced stages of NAFLD and NASH are strongly associated with morbidity and mortality—in particular, cardiovascular disease, liver cirrhosis, and hepatocellular carcinoma—it is of great importance to identify subjects at risk. A great variety of noninvasive tests has been published to diagnose NAFLD and NASH, especially using blood- and imaging-based tests. Liver biopsy remains the gold standard for NAFLD/NASH. This review aims to summarize the different mechanisms leading to NASH and liver fibrosis, the different noninvasive liver tests to diagnose and evaluate patients with severe obesity

    Effect of bariatric surgery on NAFLD/NASH: a single-centre observational prospective cohort study

    Get PDF
    Introduction The prevalence of non-alcoholic fatty liver disease (NAFLD) ranges from 25% in the general population to 90% in patients with obesity scheduled for bariatric surgery. NAFLD can progress towards non-alcoholic steatohepatitis (NASH) associated with complications such as cirrhosis, hepatocellular carcinoma and cardiovascular disease. To date, losing weight and lifestyle modifications are the best known treatments for NASH. Bariatric surgery significantly improves NAFLD/NASH in the short term. However, the extent of this improvement is not yet clear and long-term data on the natural course of NAFLD/NASH after bariatric surgery are lacking. The factors involved in NAFLD/NASH regression after bariatric surgery have not been elucidated.Methods and analysis This is an observational prospective cohort study including patients scheduled for bariatric surgery. Extensive metabolic and cardiovascular analyses will be carried out including measurements of carotid intima media thickness and pulse wave velocity. Genomic, proteomic, lipidomic and metabolomic studies will be done. Microbioma analyses before and 1 year after surgery will be done. Transient elastography measurements will be performed before and at 1, 3 and 5 years after surgery. For those with an elevated preoperative transient elastography measurement by Fibroscan, a laparoscopic liver biopsy will be performed during surgery. Primary outcome measures are the change of steatosis and liver fibrosis 5 years after surgery. Secondary outcome measure is the comparison of the transient elastography measurements with the NAFLD Activity Score from the biopsies.Ethics and dissemination The protocol has been approved by the Medical Research Ethics Committees United, Nieuwegein, on 1 March 2022 (registration code R21.103/NL79423.100.21). The study results will be submitted for publication in peer-reviewed journals and data will be presented at scientific meetings.Trial registration number NCT05499949
    corecore