24 research outputs found

    Reinforcing synthetic data for meticulous survival prediction of patients suffering from left ventricular systolic dysfunction

    Get PDF
    Congestive heart failure is among leading genesis of concern that requires an immediate medical attention. Among various cardiac disorders, left ventricular systolic dysfunction is one of the well known cardiovascular disease which causes sudden congestive heart failure. The irregular functioning of a heart can be diagnosed through some of the clinical attributes, such as ejection fraction, serum creatinine etcetera. However, due to availability of a limited data related to the death events of patients suffering from left ventricular systolic dysfunction, a critical level of thresholds of clinical attributes can not be estimated with higher precision. Hence, this paper proposes a novel pseudo reinforcement learning algorithm which overcomes a problem of majority class skewness in a limited dataset by appending a synthetic dataset across minority data space. The proposed pseudo agent in the algorithm continuously senses the state of the dataset (pseudo environment) and takes an appropriate action to populate the dataset resulting into higher reward. In addition, the paper also investigates the role of statistically significant clinical attributes such as age, ejection fraction, serum creatinine etc., which tends to efficiently predict the association of death events of the patients suffering from left ventricular systolic dysfunctio

    The Study of Plasticized Amorphous Biopolymer Blend Electrolytes Based on Polyvinyl Alcohol (PVA): Chitosan with High Ion Conductivity for Energy Storage Electrical Double-Layer Capacitors (EDLC) Device Application

    Get PDF
    In this study, plasticized films of polyvinyl alcohol (PVA): chitosan (CS) based electrolyte impregnated with ammonium thiocyanate (NH4SCN) were successfully prepared using a solution-casting technique. The structural features of the electrolyte films were investigated through the X-ray diffraction (XRD) pattern. The enrichment of the amorphous phase with increasing glycerol concentration was confirmed by observing broad humps. The electrical impedance spectroscopy (EIS) portrays the improvement of ionic conductivity from 10−5 S/cm to 10−3 S/cm upon the addition of plasticizer. The electrolytes incorporated with 28 wt.% and 42 wt.% of glycerol were observed to be mainly ionic conductor as the ionic transference number measurement (TNM) was found to be 0.97 and 0.989, respectively. The linear sweep voltammetry (LSV) investigation indicates that the maximum conducting sample is stable up to 2 V. An electrolyte with the highest conductivity was used to make an energy storage electrical double-layer capacitor (EDLC) device. The cyclic voltammetry (CV) plot depicts no distinguishable peaks in the polarization curve, which means no redox reaction has occurred at the electrode/electrolyte interface. The fabricated EDLC displays the initial specific capacitance, equivalent series resistance, energy density, and power density of 35.5 F/g, 65 Ω, 4.9 Wh/kg, and 399 W/kg, respectively

    Characteristics of Plasticized Lithium Ion Conducting Green Polymer Blend Electrolytes Based on CS: Dextran with High Energy Density and Specific Capacitance

    No full text
    The solution cast process is used to set up chitosan: dextran-based plasticized solid polymer electrolyte with high specific capacitance (228.62 F/g) at the 1st cycle. Fourier-transform infrared spectroscopy (FTIR) pattern revealed the interaction between polymers and electrolyte components. At ambient temperature, the highest conductive plasticized system (CDLG–3) achieves a maximum conductivity of 4.16 × 10−4 S cm−1. Using both FTIR and electrical impedance spectroscopy (EIS) methods, the mobility, number density, and diffusion coefficient of ions are measured, and they are found to rise as the amount of glycerol increases. Ions are the primary charge carriers, according to transference number measurement (TNM). According to linear sweep voltammetry (LSV), the CDLG–3 system’s electrochemical stability window is 2.2 V. In the preparation of electrical double layer capacitor devices, the CDLG–3 system was used. There are no Faradaic peaks on the cyclic voltammetry (CV) curve, which is virtually rectangular. Beyond the 20th cycle, the power density, energy density, and specific capacitance values from the galvanostatic charge–discharge are practically constant at 480 W/Kg, 8 Wh/Kg, and 60 F g−1, for 180 cycles

    New photocatalytic materials based on alumina with reduced band gap: A DFT approach to study the band structure and optical properties

    No full text
    In this study, first-principles calculations using Density Functional Theory (DFT) have been conducted, which were carried out using the Vienna Ab initio Simulation Package (VASP) to examine the effect of Tl insertion on electronic and optical properties of the α-Al2O3. Alumina materials are abundant and the main shortcoming of alumina for photocatalyst applications is their large energy band gap and little absorption in the visible region of electromagnetic (EM) radiation. Insertion of transition metals (TM) into semiconductor or insulating materials is a hot approach to improve the absorption behavior of these materials using DFT assessment. In the current work an analysis of the band structure (BS) and the density of states (DOS); comprising both the total density of states (TDOS) as well as the partial density of states (PDOS) were carried out. The BS diagram revealed that various concentrations of Tl insertion into the α-Al2O3 reduced the band gap to 2.38 eV. In the density of state diagram, the band gap energy shifted to lower photon energies with increasing Tl concentrations which supports the BS results. The band gap obtained from the first peak in the imaginary part of dielectric function is close enough to those established from the BS diagram. Distinguished shifting of absorption coefficient to lower photon energy (2.27 eV) reveals the suitability of the doped α-Al2O3 for various applications. The increase of refractive index (n) with increasing of Tl into the α-Al2O3 structure is evidence for the increase of charge, which is a source for polarization and attenuates the velocity of light in a medium. The increase of optical conductivity with photon energy started after band gap values. The reflectance, absorbance and transmittance results indicate that the doped α-Al2O3 is responsive to the visible region of EM radiation while in pure state almost transparent

    Significance of Camera Pixel Error in the Calibration Process of a Robotic Vision System

    No full text
    Although robotic vision systems offer a promising technology solution for rapid and reconfigurable in-process 3D inspection of complex and large parts in contemporary manufacturing, measurement accuracy poses a challenge for its wide deployment. One of the key issues in adopting a robotic vision system is to understand the extent of its measurement errors which are directly correlated with the calibration process. In this paper, a possible source of practical and inherent measurement uncertainties involved in the calibration process of a robotic vision system are discussed. The system considered in this work consists of an image sensor mounted on an industrial robot manipulator with six degrees of freedom. Based on a series of experimental tests and computer simulations, the paper gives a comprehensive performance comparison of different calibration approaches and shows the impact of measurement uncertainties on the calibration process. It has been found from the error sensitivity analysis that minor uncertainties in the calibration process can significantly affect the accuracy of the robotic vision system. Further investigations suggest that inducing errors in image calibration patterns can have an adverse effect on the hand–eye calibration process compared to the angular errors in the robot joints

    Impedance and Dielectric Properties of PVC:NH4I Solid Polymer Electrolytes (SPEs): Steps toward the Fabrication of SPEs with High Resistivity

    No full text
    In the present article, a simple technique is provided for the fabrication of a polymer electrolyte system composed of polyvinyl chloride (PVC) and doped with varying content of ammonium iodide (NH4I) salt using solution-casting methodology. The influences of NH4I on the structural, electrochemical, and electrical properties of PVC have been investigated using X-ray diffraction, electrochemical impedance spectroscopy (EIS), and dielectric properties. The X-ray study reveals the amorphous nature of the polymer–salt complex. The EIS measurement revealed an ionic conductivity of 5.57 × 10−10 S/cm for the electrolyte containing 10 wt.% of salt. Our hypothesis is provided, which demonstrated the likelihood of designing highly resistive solid electrolytes using the concept of a polymer electrolyte. Here, the results showed that the resistivity of the studied samples is not dramatically decreased with increasing NH4I. Bode plots distinguish the decrease in resistance or impedance with increasing salt contents. Dielectric measurements revealed a decrease in the dielectric constant with the increase of NH4I content in the PVC polymer. The relaxation time and dielectric properties of the electrolytes confirmed their non-Debye type behavior. This pattern has been validated by the existence of an incomplete semicircle in the Argand plot. Insulation materials with low εr have found widespread applications in electronic devices due to the reduction in delay, power dissipation, and crosstalk. In addition, an investigation of real and imaginary parts of electric modulus leads to the minimized electrode polarization being reached

    Bio-Based Plasticized PVA Based Polymer Blend Electrolytes for Energy Storage EDLC Devices: Ion Transport Parameters and Electrochemical Properties

    No full text
    This report shows a simple solution cast methodology to prepare plasticized polyvinyl alcohol (PVA)/methylcellulose (MC)-ammonium iodide (NH4I) electrolyte at room temperature. The maximum conducting membrane has a conductivity of 3.21 × 10−3 S/cm. It is shown that the number density, mobility and diffusion coefficient of ions are enhanced by increasing the glycerol. A number of electric and electrochemical properties of the electrolyte—impedance, dielectric properties, transference numbers, potential window, energy density, specific capacitance (Cs) and power density—were determined. From the determined electric and electrochemical properties, it is shown that PVA: MC-NH4I proton conducting polymer electrolyte (PE) is adequate for utilization in energy storage device (ESD). The decrease of charge transfer resistance with increasing plasticizer was observed from Bode plot. The analysis of dielectric properties has indicated that the plasticizer is a novel approach to increase the number of charge carriers. The electron and ion transference numbers were found. From the linear sweep voltammetry (LSV) response, the breakdown voltage of the electrolyte is determined. From Galvanostatic charge-discharge (GCD) measurement, the calculated Cs values are found to drop with increasing the number of cycles. The increment of internal resistance is shown by equivalent series resistance (ESR) plot. The energy and power density were studied over 250 cycles that results to the value of 5.38–3.59 Wh/kg and 757.58–347.22 W/kg, respectively

    Polymer Composites with 0.98 Transparencies and Small Optical Energy Band Gap Using a Promising Green Methodology: Structural and Optical Properties

    No full text
    In this work, a green approach was implemented to prepare polymer composites using polyvinyl alcohol polymer and the extract of black tea leaves (polyphenols) in a complex form with Co2+ ions. A range of techniques was used to characterize the Co2+ complex and polymer composite, such as Ultraviolet–visible (UV-Visible) spectroscopy, Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). The optical parameters of absorption edge, refractive index (n), dielectric properties including real and imaginary parts (εr, and εi) were also investigated. The FRIR and XRD spectra were used to examine the compatibility between the PVA polymer and Co2+-polyphenol complex. The extent of interaction was evidenced from the shifts and change in the intensity of the peaks. The relatively wide amorphous phase in PVA polymer increased upon insertion of the Co2+-polyphenol complex. The amorphous character of the Co2+ complex was emphasized with the appearance of a hump in the XRD pattern. From UV-Visible spectroscopy, the optical properties, such as absorption edge, refractive index (n), (εr), (εi), and bandgap energy (Eg) of parent PVA and composite films were specified. The Eg of PVA was lowered from 5.8 to 1.82 eV upon addition of 45 mL of Co2+-polyphenol complex. The N/m* was calculated from the optical dielectric function. Ultimately, various types of electronic transitions within the polymer composites were specified using Tauc’s method. The direct bandgap (DBG) treatment of polymer composites with a developed amorphous phase is fundamental for commercialization in optoelectronic devices

    Synthesis of Amorphous Conjugated Copolymers Based on Dithienosilole-Benzothiadiazole Dicarboxylic Imide with Tuned Optical Band Gaps and High Thermal Stability

    No full text
    Two alternating copolymers of dithienosilole (DTS) were designed and synthesized with small optical band gaps, flanked by thienyl units as electron-donor moieties and benzothiadiazole dicarboxylic imide (BTDI) as electron-acceptor moieties. The BTDI moieties were anchored to two different solubilizing side chains, namely 3,7-dimethyloctyl and n-octyl chains. An analysis of the effect of the electrochemical, optical, thermal, and structural characteristics of the resulting polymers along with their solubility and molecular weight is the subject of this paper. The Stille polymerization was used to synthesize PDTSDTBTDI-DMO and PDTSDTBTDI-8. The average molecular weight of PDTSDTBTDI-DMO and PDTSDTBTDI-8 is 14,600 and 5700 g mol−1, respectively. Both polymers have shown equivalent optical band gaps around 1.4 eV. The highest occupied molecular orbital (HOMO) levels of the polymers were comparable, around −5.2 eV. The lowest unoccupied molecular orbital (LUMO) values were −3.56 and −3.45 eV for PDTSDTBTDI-DMO and PDTSDTBTDI-8, respectively. At decomposition temperatures above 350 °C, both copolymers showed strong thermal stability. The studies of powder X-ray diffraction (XRD) have shown that they are amorphous in a solid-state
    corecore