2,767 research outputs found
New Alloying Systems for Sintered Steels: Critical Aspects of Sintering Behavior
Oxygen-sensitive alloying elements such as Mn, Si, and Cr have a high potential for improving the properties of low alloyed sintered steels while reducing the alloying cost. However, it is necessary to find a way for avoiding, or at least minimizing, the oxidation of these elements especially during the early stages of the sintering cycle. In this study Mn, Si, and Cr were introduced in the form of a master alloy powder designed to be mixed with the iron base powder and provide the final composition of the steel during the sintering process. The reduction/oxidation phenomena taking place during the heating stage were studied by thermogravimetry, dilatometry, and mass spectroscopy, using either reducing (H2) or inert (Ar) atmospheres. The results show how the difference in chemical activity between base iron powder and master alloy causes the so called "internal-getter" effect, by which the reduction of less stable iron oxides leads to oxidation of the elements with higher affinity for oxygen. This effect can be somehow minimized when sintering in H2, since the iron oxides are reduced at lower temperatures at which the reactivity of the elements in the master alloy is lower. However, H2 concentration in the processing atmosphere needs to be carefully adapted to the specific composition of the materials being processed in order to minimize decarburization by methane formation during sintering.Höganäs AB Sweden, financial support provided through the Höganäs Chair IVPublicad
Ispitivanja statičke kompresije i rezonantne vibracije celularnih materijala dobivenih gravitacijskim sinterovanjem šupljih brončanih kugli
The cylindrical and rod-shaped specimens were prepared by gravity sintering from Cu-Sn hollow spheres. On these samples, both static compression tests and measurements of resonance frequencies were performed. The compressive stress-strain curves revealed the features characteristic for a closed-cell ductile cellular solid. The removal of in general open porosity among loosely packed closed metallic hollow spheres was recognized as the principal mode of plastic deformation. The approximative effective moduli of elasticity were determined for cellular materials under consideration by means of the measurements of resonance frequencies on rod-shaped specimens.Cilindrični i šipkasti uzorci su pripremljeni gravitacionim sinterovanjem šupljih Cu-Sn kugli. Na tim uzorcima su provedena ispitivanja statičke kompresije i mjerenja rezonantnih frekvencija. Krivulja naprezanje-rastezanje nam pokazuje svojstva karakteristična za plastične celularne krute materijale sa zatvorenim ćelijama. Uklanjanje uglavnom otvorene povezanosti među labavo povezanim šupljim metalnim kuglama prepoznajemo kao glavni način plastične deformacije. Za celularne materijale koji se razmatraju određeni su približno učinkoviti moduli elastičnosti mjerenjem frekvencija rezonancije na šipkasto oblikovanim uzorcima
Influence of nano-reinforcements on the mechanical properties and microstructure of titanium matrix composites
The goal of this work is the evaluation of nanoscaled reinforcements; in particular nanodiamonds (NDs) and carbon nanotubes (CNTs) on properties of titanium matrix composites (TiMMCs). By using nano sized materials as reinforcement in TiMMCs, superior mechanical and physical properties can be expected. Additionally, titanium powder metallurgy (P/M) offers the possibility of changing the reinforcement content in the matrix within a very wide range. In this work, TiMMCs have been produced from titanium powder (Grade 4). The manufacturing of the composites was done by hot pressing, followed by the characterisation of the TiMMCs. The Archimedes density, hardness and oxygen content of the specimens in addition to the mechanical properties were compared and reported in this work. Moreover, XRD analysis and SEM observations revealed in situ formed titanium carbide (TiC) phase after hot pressing in TiMMCs reinforced with NDs and CNTs, at 900 °C and 1100 °C respectively. The strengthening effect of NDs was more significant since its distribution was more homogeneous in the matrix
Accelerated mechanical fatigue testing and lifetime of interconnects in microelectronics
AbstractDue to the rapid development of packaging industry accelerated reliability testing for evaluation of lifetime of electronic components are increasingly utilized. In addition to common active thermal cycling procedures, accelerated mechanical fatigue testing provides a new possibility to assess the reliability of microelectronic components, mainly due to the significantly shorter duration of testing time. In this investigation we have used an ultrasonic fatigue testing system in combination with a special experimental set-up for qualification and lifetime determination of microelectronic interconnects. Using this technique, fatigue life of Al wire bonded interconnects were determined and S-N curves (shear stress as a function of loading cycles) up to N=109 were plotted. Three dimensional elasto-plastic FEM simulations were performed to determine the distributions of shear stress and plastic strain generated during cyclic fatigue in the bond area. Furthermore, the FEM model was employed to predict the lifetime of wire-bonds. The results were correlated to the lifetime curves of similar bonds obtained by power cycling tests. Detailed microstructural investigations were performed by means of EBSD -SEM to study the evolution of microstructure of the interconnects subjected to thermal and mechanical fatigue loading. This study demonstrates the applicability of accelerated mechanical fatigue testing as an alternative to time consuming thermal cycling for qualification of microelectronic interconnects
Structural and electrical properties of Ti doped α-Fe2O3
In this work we have analyzed the effects of Ti doping on structural and electrical properties of α-Fe2O3. When the amount of added Ti (5 wt.%TiO2) was within the solubility degree and XRD, SEM and EDS analysis revealed a homogenous hematite structure, with lattice parameters a= 5.03719(3) Å, c=13.7484(1) Å slightly increased due to incorporation of Ti into the rhombohedral hematite lattice. Higher amounts of Ti (10 wt.%TiO2) resulted in the formation of pseudobrookite, besides hematite, confirmed by SEM and EDS analysis. Studies of electric properties in the temperature range 25-225oC at different frequencies (100 - 1Mz) showed that Ti doping improved electrical conductivity. Impedance analysis was performed using an equivalent circuit, showing one relaxation process and suggesting dominant grain boundary contribution. [Projekat Ministarstva nauke Republike Srbije, br. III45014 i br. III43008
Calibration and Characterization of the IceCube Photomultiplier Tube
Over 5,000 PMTs are being deployed at the South Pole to compose the IceCube
neutrino observatory. Many are placed deep in the ice to detect Cherenkov light
emitted by the products of high-energy neutrino interactions, and others are
frozen into tanks on the surface to detect particles from atmospheric cosmic
ray showers. IceCube is using the 10-inch diameter R7081-02 made by Hamamatsu
Photonics. This paper describes the laboratory characterization and calibration
of these PMTs before deployment. PMTs were illuminated with pulses ranging from
single photons to saturation level. Parameterizations are given for the single
photoelectron charge spectrum and the saturation behavior. Time resolution,
late pulses and afterpulses are characterized. Because the PMTs are relatively
large, the cathode sensitivity uniformity was measured. The absolute photon
detection efficiency was calibrated using Rayleigh-scattered photons from a
nitrogen laser. Measured characteristics are discussed in the context of their
relevance to IceCube event reconstruction and simulation efforts.Comment: 40 pages, 12 figure
Search for non-relativistic Magnetic Monopoles with IceCube
The IceCube Neutrino Observatory is a large Cherenkov detector instrumenting
of Antarctic ice. The detector can be used to search for
signatures of particle physics beyond the Standard Model. Here, we describe the
search for non-relativistic, magnetic monopoles as remnants of the GUT (Grand
Unified Theory) era shortly after the Big Bang. These monopoles may catalyze
the decay of nucleons via the Rubakov-Callan effect with a cross section
suggested to be in the range of to
. In IceCube, the Cherenkov light from nucleon decays
along the monopole trajectory would produce a characteristic hit pattern. This
paper presents the results of an analysis of first data taken from May 2011
until May 2012 with a dedicated slow-particle trigger for DeepCore, a
subdetector of IceCube. A second analysis provides better sensitivity for the
brightest non-relativistic monopoles using data taken from May 2009 until May
2010. In both analyses no monopole signal was observed. For catalysis cross
sections of the flux of non-relativistic
GUT monopoles is constrained up to a level of at a 90% confidence level,
which is three orders of magnitude below the Parker bound. The limits assume a
dominant decay of the proton into a positron and a neutral pion. These results
improve the current best experimental limits by one to two orders of magnitude,
for a wide range of assumed speeds and catalysis cross sections.Comment: 20 pages, 20 figure
Lateral Distribution of Muons in IceCube Cosmic Ray Events
In cosmic ray air showers, the muon lateral separation from the center of the
shower is a measure of the transverse momentum that the muon parent acquired in
the cosmic ray interaction. IceCube has observed cosmic ray interactions that
produce muons laterally separated by up to 400 m from the shower core, a factor
of 6 larger distance than previous measurements. These muons originate in high
pT (> 2 GeV/c) interactions from the incident cosmic ray, or high-energy
secondary interactions. The separation distribution shows a transition to a
power law at large values, indicating the presence of a hard pT component that
can be described by perturbative quantum chromodynamics. However, the rates and
the zenith angle distributions of these events are not well reproduced with the
cosmic ray models tested here, even those that include charm interactions. This
discrepancy may be explained by a larger fraction of kaons and charmed
particles than is currently incorporated in the simulations
- …