26 research outputs found

    Digital imaging and qPCR analysis and comparison of short-term plaque removal effects of tooth brushing

    Get PDF
    PurposeDigital image technology and a real-time fluorescent quantitative polymerase chain reaction (RQ-PCR) were used to determine the changes in dental plaque caused by different toothbrushing tools.MethodsA total of 120 subjects were selected and divided into four groups: a manual toothbrush group, a manual toothbrush combined with an oral irrigator group, an electric toothbrush combined with an oral irrigator group, and an electric toothbrush group. We compared the changes in plaque count, plaque area, and colony colonization of the four groups after different cleaning tools had been used for a period of time.ResultsDental plaque count and plaque area decreased in all four groups. The decreases in plaque count and Streptococcus mutans in the electric toothbrush combined with an oral irrigator group were significantly higher than those in other groups.ConclusionElectric toothbrush combined with an oral irrigator shows a good result for plaque removal effect. Digital image analysis combined with biological methods can be used to evaluate dental plaque

    Exploration of Brain-Computer Interaction for Supporting Children’s Attention Training: A Multimodal Design Based on Attention Network and Gamification Design

    No full text
    Recent developments in brain–computer interface (BCI) technology have shown great potential in terms of estimating users’ mental state and supporting children’s attention training. However, existing training tasks are relatively simple and lack a reliable task-generation process. Moreover, the training experience has not been deeply studied, and the empirical validation of the training effect is still insufficient. This study thusly proposed a BCI training system for children’s attention improvement. In particular, to achieve a systematic training process, the attention network was referred to generate the training games for alerting, orienting and executive attentions, and to improve the training experience and adherence, the gamification design theory was introduced to derive attractive training tasks. A preliminary experiment was conducted to set and modify the training parameters. Subsequently, a series of contrasting user experiments were organized to examine the impact of BCI training. To test the training effect of the proposed system, a hypothesis-testing approach was adopted. The results revealed that the proposed BCI gamification attention training system can significantly improve the participants’ attention behaviors and concentration ability. Moreover, an immersive, inspiring and smooth training process can be created, and a pleasant user experience can be achieved. Generally, this work is promising in terms of providing a valuable reference for related practices, especially for how to generate BCI attention training tasks using attention networks and how to improve training adherence by integrating multimodal gamification elements

    <sup>68</sup>Ga-HBED-CC-WL-12 PET in Diagnosing and Differentiating Pancreatic Cancers in Murine Models

    No full text
    Positron emission tomography (PET) has been proven as an important technology to detect the expression of programmed death ligand 1 (PD-L1) non-invasively and in real time. As a PD-L1 inhibitor, small peptide WL12 has shown great potential in serving as a targeting molecule to guide PD-L1 blockade therapy in clinic. In this study, WL12 was modified with HBED-CC to label 68Ga in a modified procedure, and the biologic properties were evaluated in vitro and in vivo. 68Ga-HBED-CC-WL12 showed good stability in saline and can specifically target PD-L1-positive cells U87MG and PANC02. In PANC02-bearing mice, 68Ga-HBED-CC-WL12 showed fast permeation in subcutaneous tumors within 20 min (SUVmax 0.37) and was of higher uptake in 90 min (SUVmax 0.38). When compared with 18F-FDG, 68Ga-FAPI-04, and 68Ga-RGD, 68Ga-HBED-CC-WL12 also demonstrated great image quality and advantages in evaluating immune microenvironment. This study modified the 68Ga-labeling procedure of WL12 and obtained better biologic properties and further manifested the clinical potential of 68Ga-HBED-CC-WL12 for PET imaging and guiding for immunotherapy

    Active Indoor Soundscape Design: A Case Study of Ceramic Passive Amplifiers

    No full text
    Indoor soundscape research has developed rapidly in recent years, with the aim of improving the single indoor noise reduction method and people&rsquo;s acoustic comfort. However, practical solutions to promote the generation of positive indoor soundscapes are still insufficient. The purpose of this study was to explore the improvement effect of ceramic passive amplifiers on the indoor soundscape and the relationship between the improvement effect and different amplifier shapes. Objective sound pressure level (SPL) values and subjective soundscape perception were measured for 10 ceramic passive amplifiers based on the soundscape, mainly using a comparative method. Ten sample amplifiers were compared with the acoustic data of the original open-plan studio environment, and then with an electronic sound amplifier. The results show that ceramic passive amplifiers can improve the quality of the indoor soundscape by creating sound scenes with appropriate loudness. Regarding non-acoustic aspects, the shape and materials of ceramic passive amplifiers play a positive role in emotional guidance

    Inokosterone from <em>Gentiana rigescens</em> Franch Extends the Longevity of Yeast and Mammalian Cells via Antioxidative Stress and Mitophagy Induction

    No full text
    In the present study, replicative lifespan and chronological lifespan assays of yeast were used to double-screen antiaging compounds from Gentiana rigescens Franch, a Chinese herb medicine. Inokosterone from G. rigescens Franch extended not only the replicative lifespan of K6001 yeast but also the chronological lifespan of YOM36 yeast. Furthermore, it can enhance the survival ability of mammalian cells. In order to understand the mechanism of action of this compound, this study focused on antioxidative stress and autophagy when performing the analysis. The increased cell survival rate under oxidative stress conditions, antioxidant enzyme activity and gene expression were observed in the inokosterone-treated groups. Meanwhile, the reactive oxygen species (ROS) and lipid peroxidation of yeast were obviously decreased. Additionally, the macroautophagy and mitophagy in YOM38-GFP-ATG8 yeast were increased upon inokosterone treatment, respectively. At the same time, the cleavage-free GFP from GFP-ATG8 in the cytoplasm and the ubiquitin of the mitochondria at the protein level were markedly enhanced after incubation with inokosterone. Furthermore, we investigated the effect of inokosterone on antioxidative stress and autophagy in mammalian cells, and the relationship between ROS and autophagy. The ROS, malondialdehyde (MDA) were significantly decreased, and the autophagosomes in mammalian cells were obviously increased after inokosterone treatment. The autophagosomes in ∆sod1 yeast with a K6001 background had no obvious changes, and the ROS and MDA of ∆sod1 yeast were increased compared with K6001 yeast. The increase of autophagosomes and the reduction of ROS and MDA in ∆sod1 yeast were observed after treatment with inokosterone. Meanwhile, the reduction of the ROS level and the increase of the SOD1 gene expression of K6001 yeast lacking autophagy were observed after treatment with inokosterone. In order to indicate whether the genes related to antioxidant enzymes and autophagy were involved in the antiaging effect of inokosterone, mutants of K6001 yeast were constructed to conduct a lifespan assay. The replicative lifespans of ∆sod1, ∆sod2, ∆uth1, ∆skn7, ∆gpx, ∆cat, ∆atg2, and ∆atg32 of K6001 yeast were not affected by inokosterone. These results suggest that inokosterone exerted an antiaging activity via antioxidative stress and increased autophagy activation; autophagy affected the ROS levels of yeast via the regulation of SOD1 gene expression

    Identification and study of differentially expressed miRNAs in aged NAFLD rats based on high-throughput sequencing

    No full text
    Introduction and objectives: Hepatic microRNA (miR) expression profiles were explored in aged rats with NAFLD, in order to clarify the molecular mechanisms underlying the pathophysiological processes of aging-related NAFLD. Patients or materials and methods: 24 aged rats (18-month-old) and 24 young rats (2-month-old) were randomly divided into two subgroups according to diet, control group and NAFLD group. After 8 weeks of administering 45% high-fat diet or normal diet, total hepatic RNA was extracted from liver tissues of the aged rats. Differentially expressed microRNAs (DE-miRs) in aged NAFLD group were detected and screened out using high-throughput sequencing technology. The data were subjected to Gene Ontology functional enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analyses using a bioinformatics approach. The sequencing results were further verified by RT-qPCR. Results: Compared with the aged control liver tissues, 6 significantly upregulated miRs (miR-881-3p, miR-871-3p, miR-335, miR-223-3p, miR-155-5p, miR-146b-5p) and 4 significantly downregulated miRs (miR-182, miR-193-3p, miR-31a-5p and miR-96-5p) were identified in the aged NAFLD liver tissues. These DE-miRs were found to be involved in the regulation of cell signaling transduction and metabolism processes, probably affecting signaling pathways relevant to insulin secretion and some senile diseases. RT-qPCR results corroborated the sequencing results and demonstrated that 6 significantly upregulated miRs were not identified in the young group. Conclusions: A total of 10 DE-miRs identified in the aged NAFLD rats were involved in some certain insulin secretion and age-related functional pathways, which may serve as novel candidate targets for the diagnosis and treatment of aging-associated NAFLD

    Cobalt-borate nanowire array as a high-performance catalyst for oxygen evolution reaction in near-neutral media

    No full text
    The development of an efficient catalyst for electrolytic water oxidation under neutral or near-neutral environment remains a great challenge. In this communication, we developed a high-performance cobalt-borate nanowire array on a Ti mesh (Co-Bi NA/Ti) from a CoSe2 nanowire array via rapid topotactic conversion. As a three-dimensional water oxidation electrode, such Co-Bi NA/Ti, demands only 420 mV to drive a geometrical catalytic current density of 10 mA cm(-2). It exhibits superior activity when compared to most of the reported non-precious metal catalysts working under benign conditions. In addition, Co-Bi NA/Ti also displays good stability and high turnover frequency (0.59 s(-1) at an overpotential of 600 mV) in 0.1 M potassium borate (pH: 9.2). This novel research finding has paved a new path for developing highly active oxygen evolution reaction electrocatalysts in near-neutral media

    Three-Dimensional Nickel-Borate Nanosheets Array for Efficient Oxygen Evolution at Near-Neutral pH

    No full text
    Nickel-borate nanosheets array on titanium mesh (Ni-Bi NA/TM) was derived from NiSe2 nanosheets array on titanium mesh (NiSe2 NA/TM) by electrochemical transformation. As a three-dimensional electrode, Ni-Bi NA/TM exhibited high catalytic activity toward the oxygen evolution reaction and required a low overpotential of 430 mV at 10 mAcm(-2) in 0.1 M potassium borate (pH 9.2), with outstanding long-term stability and high turnover frequency

    A H₂S‐evolving alternately‐catalytic enzyme bio‐heterojunction with antibacterial and macrophage‐reprogramming activity for all‐stage infectious wound regeneration

    No full text
    The disorder of the macrophage phenotype and the hostile by‐product of lactate evoked by pathogenic infection in hypoxic deep wound inevitably lead to the stagnant skin regeneration. In this study, hydrogen sulfide (H2S)‐evolving alternately catalytic bio‐heterojunction enzyme (AC‐BioHJzyme) consisting of CuFe2S3 and lactate oxidase (LOD) named as CuFe2S3@LOD is developed. AC‐BioHJzyme exhibits circular enzyme‐mimetic antibacterial (EMA) activity and macrophage re‐rousing capability, which can be activated by near‐infrared‐II (NIR‐II) light. In this system, LOD exhausts lactate derived from bacterial anaerobic respiration and generated hydrogen peroxide (H2O2), which provides an abundant stock for the peroxidase‐mimetic activity to convert the produced H2O2 into germicidal •OH. The GPx‐mimetic activity endows AC‐BioHJzyme with a glutathione consumption property to block the antioxidant systems in bacterial metabolism, while the O2 provided by the CAT‐mimetic activity can generate 1O2 under the NIR‐II irradiation. Synchronously, the H2S gas liberated from CuFe2S3@LOD under the infectious micromilieu allows the reduction of Fe(III)/Cu(II) to Fe(II)/Cu(І), resulting in sustained circular EMA activity. In vitro and in vivo assays indicate that the CuFe2S3@LOD AC‐BioHJzyme significantly facilitates the infectious cutaneous regeneration by killing bacteria, facilitating epithelialization/collagen deposition, promoting angiogenesis, and reprogramming macrophages. This study provides a countermeasure for deep infectious wound healing via circular enzyme‐mimetic antibiosis and macrophage re‐rousing
    corecore