4 research outputs found

    Spinal antinociception mediated by a cocaine-sensitive dopaminergic supraspinal mechanism

    Full text link
    The role of dopaminergic descending supraspinal processes in mediating the antinociceptive action of cocaine was studied in the rat using a combination of extracellular neuronal recording and behavioral techniques. Neurons in the superficial laminae (I-II) of the spinal dorsal horn with receptive fields on the tail were recorded in anesthetized rats using insulated metal microelectrodes. Stimulation of the receptive field with either high intensity transcutaneous electrical pulses or with an infrared CO2 laser beam produced a biphasic increase in dorsal horn unit discharge. Conduction velocity estimates indicated that the early discharge corresponded to activity in A[delta] whereas the late response corresponded to activity in C afferent fibers. Cumulative doses of cocaine (0.1-3.1 mg/kg i.v.) inhibited the late response to either electrical or laser stimulation in a dose-related manner. The early response to laser, but not electrical, stimulation was also suppressed by cocaine. Neurons in the spinal dorsal horn with receptive fields on the ipsilateral hindpaw were activated by natural noxious (pinch) or innocuous (tap) somatic stimulation. Cocaine selectively suppressed nociceptively evoked dorsal horn unit discharge. This antinociceptive effect was dose-related (0.3-3.1 mg/kg, i.v.) and antagonized by eticlopride (0.05-0.1 mg/kg, i.v.), a selective D2 dopamine receptor blocker. The same doses of cocaine failed to inhibit the responses of dorsal horn neurons to low threshold innocuous stimulation. Complete thoracic spinal cord transection eliminated the antinociceptive effect of cocaine on dorsal horn neurons and also eliminated the cocaine-induced attenuation of the tail-flick reflex. These data demonstrte that cocaine selectively inhibits nociceptive spinal reflexes and the nociceptive responses of dorsal horn neurons primarily by means of a D2 dopaminergic receptor mechanism. This antinociceptive effect of cocaine is independent of its local anesthetic activity and requires the integrity of the thoracic spinal cord, suggesting that the drug potentiates or activates supraspinal dopaminergic projections to the dorsal horn.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/31630/1/0000564.pd

    Cortical Potentials Evoked by Tooth Pulp Stimulation Differentiate Between the Analgesic and Sedative Effects of Morphine in Awake Rats'

    No full text
    ABBREVIATION& TPS, tooth pulp stimulation; CEP, cortical evoked potential; P12, fIrst positive peak of the CEP occurring at 12 meec; Nfl, first negative c of the CEP occurring at 22 msec; P34, second positive peak of the CEP occurring at 34 msec; N53, second negative peak of the CEP occurring at 53 msec; P125, thIrd positive peak of the CEP occurring at 125 msec; AUC, area under the curve
    corecore