23 research outputs found

    FINITE ELEMENT MODELING FOR ANALYSIS VIBRATION OF LARGE TURBO MACHINERY

    Get PDF
    Recently, finite elements method (FEM) has been used most popular for analysis of stress, vibration, heat flow and many other phenomena. With the increase in computing power, FEM is wider used for the static and dynamic analysis of rotor bearing system. In this paper, the lateral vibration of large turbo machinery is studied. The FEM model is created and the eigenvalues and eigenvectors are calculated and analyzed to find natural frequencies, critical speeds, mode shapes and unbalance responses. Then critical and mode shapes are determined. Finally, responses of unbalance force are analyzed and compared in case of isotropic bearings and anisotropic bearings

    Heat storage performance analysis and parameter design for encapsulated phase change materials

    Get PDF
    This paper establishes a thermo-mechanical model considering the liquid density variation to explore the comprehensive energy storage performance of two types of small-sized encapsulated phase change materials (PCMs) as well as effects of shell thickness. The study shows that the varying ranges of internal pressure, melting temperature and latent heat are markedly diminished during melting of PCMs after taking into account the liquid density variation. The decrease of shell thickness leads to a decrease of maximum internal pressure and a larger decrease of critical cracking pressure, which will increase the risk of shell cracking. The decrease in shell thickness slows down the increase in melting temperature and the decrease in latent heat during the melting process, which consequently reduces the melting time and increases the stored latent energy. These results indicate that reducing shell thickness of encapsulated PCMs is favourable for elevating energy charging rate and energy storage capacity while it is harmful to mechanical stability. The Cu/Ni capsule has smaller critical core/shell size ratio to avoid cracking than the salts/SiC capsule, while the former offers a shorter melting period. This implies that physical properties of materials of PCM capsules should be carefully considered for improving mechanical stability and melting dynamics. This study is helpful for selection of appropriate shell thickness and materials to achieve excellent comprehensive energy storage performance of encapsulated PCMs

    Online Fatigue-Monitoring Models with Consideration of Temperature Dependent Properties and Varying Heat Transfer Coefficients

    Get PDF
    Thermal stress failure caused by alternating operational loads is the one of important damage mechanisms in the nuclear power plants. To evaluate the thermal stress responses, the Green’s function approach has been generally used. In this paper, a method to consider varying heat transfer coefficients when using the Green’s function method is proposed by using artificial parameter method and superposition principle. Time dependent heat transfer coefficient has been treated by using a modified fluid temperature and a constant heat transfer coefficient. Three-dimensional temperature and stress analyses reflecting entire geometry and heat transfer properties are required to obtain accurate results. An efficient and accurate method is confirmed by comparing its result with corresponding 3D finite element analysis results for a reactor pressure vessel (RPV). From the results, it is found that the temperature dependent material properties and varying heat transfer coefficients can significantly affect the peak stresses and the proposed method can reduce computational efforts with satisfactory accuracy

    Low-Grade Flow Energy Harvesting by Low-Mass-Ratio Oscillating Bent Plate

    No full text
    Low-grade renewable energy possesses large reserves and a wide distribution in the environment, but it is far from fully exploited due to the high cost–income ratio when using traditional convertors. A fluid-induced-vibration-based flow energy convertor with a low-cost bent plate as an oscillator is proposed to achieve better energy converting performance for low-grade flow energy conversion. The energy extraction performance and dynamic response of the bent plate are assessed numerically. The results demonstrate that the prescribed single-DOF (degree of freedom) bent plate can reach the maximum efficiency of 29.6% and power coefficient of 2.36 at the relative plunging amplitude of 3.5, while the double-DOF bent plate achieves a maximum efficiency of 37.3% and power coefficient of 1.42 at a smaller amplitude of 1.4. It is discovered that the adoption of pitching motion can help to control the variation pattern of the effective AOA (angle of attack), while the camber of the bent plate also regulates the effective AOA from the geometrical respect. The FIV-based single-DOF convertor can achieve an energy converting efficiency of 29.3% and approach the ideal sinusoidal motion trajectory closely, indicating that the optimal active motion mode can be realized by the passive motion mode with the appropriate choice of the dynamic parameters

    Low-Grade Flow Energy Harvesting by Low-Mass-Ratio Oscillating Bent Plate

    No full text
    Low-grade renewable energy possesses large reserves and a wide distribution in the environment, but it is far from fully exploited due to the high cost–income ratio when using traditional convertors. A fluid-induced-vibration-based flow energy convertor with a low-cost bent plate as an oscillator is proposed to achieve better energy converting performance for low-grade flow energy conversion. The energy extraction performance and dynamic response of the bent plate are assessed numerically. The results demonstrate that the prescribed single-DOF (degree of freedom) bent plate can reach the maximum efficiency of 29.6% and power coefficient of 2.36 at the relative plunging amplitude of 3.5, while the double-DOF bent plate achieves a maximum efficiency of 37.3% and power coefficient of 1.42 at a smaller amplitude of 1.4. It is discovered that the adoption of pitching motion can help to control the variation pattern of the effective AOA (angle of attack), while the camber of the bent plate also regulates the effective AOA from the geometrical respect. The FIV-based single-DOF convertor can achieve an energy converting efficiency of 29.3% and approach the ideal sinusoidal motion trajectory closely, indicating that the optimal active motion mode can be realized by the passive motion mode with the appropriate choice of the dynamic parameters

    The Effect of Suction Side Tubercles on Torque Output of a Steam Turbine Low-Pressure Last Stage Blade

    No full text
    Flow separation and different kinds of stall flows occur under low load conditions for steam turbine last stage blades. In order to delay the flow separation and increase turbine power production, we applied suction side tubercles on steam turbine low-pressure last stage blades in the present study. The amplitude, wavelength, position, and thickness were considered as our design variables. We used the orthogonal test method (OTM) to generate modified blades with different tubercle variables that were then numerically simulated by a three-dimensional computational fluid dynamics (CFD) analysis. The blade axial torque of the nine modified tests was compared with the original blade. The results showed that the application of bionic tubercles on the suction side of the steam turbine blade is a promising solution to improve the blade axial torque for all modified tests with a maximum increase of 33.32% due to the turbulent vortices generated by bionic tubercles

    Numerical study on energy and exergy performances of a microencapsulated phase change material slurry based photovoltaic/thermal module

    Get PDF
    Microencapsulated phase change material (MPCM) slurry has proven to have potential in elevating the overall performance of a photovoltaic/thermal (PV/T) module as a working fluid. In order to make full use of the superiority of MPCM slurry and further improve energy and exergy efficiencies of the PV/T module, the effects of MPCM concentration and melting temperature under a wide inlet fluid velocity range were explored based on a three-dimensional numerical model of coupled heat transfer in this study. The results show that both the energy and exergy efficiencies increased with the concentration. A lower melting temperature resulted in higher energy efficiency, whereas a higher melting temperature is helpful for exergy efficiency improvement. The slurry with an excessively low melting temperature (e.g. 27 °C) even led to lower exergy efficiency than pure water. The melting temperature needs to be precisely tailored to make a compromise between energy and exergy efficiencies. In comparison with pure water, the improvement in energy efficiency provided by the slurry was further enhanced at a lower inlet velocity, while the improvement in exergy efficiency was optimized by adjusting the inlet velocity to a certain value. The maximum improvement in energy efficiency provided by the slurry was 8.3%, whilst that in exergy efficiency was 3.23% in this work. From the above, the superiority of MPCM slurry can be further promoted by selecting suitable material properties and operating parameters.The authors would like to acknowledge the financial support of the Engineering and Physical Sciences Research Council (EPSRC) of the United Kingdom (Grant Nos. EP/N000714/1 and EP/N021142/1), National Natural Science Foundation of China (Grant Nos. 51606135 and 51776142) and Natural Science Foundation of Hubei Province (Grant No. 2016CFB156)
    corecore