4,142 research outputs found

    On the spectrum of the periodic Dirac operator

    Full text link
    The absolute continuity of the spectrum for the periodic Dirac operator D^=∑j=1n(−i∂∂xj−Aj)α^j+V^(0)+V^(1),x∈Rn,n≥3, \hat D=\sum_{j=1}^n(-i\frac {\partial}{\partial x_j}-A_j)\hat \alpha_j + \hat V^{(0)}+\hat V^{(1)}, x\in R^n, n\geq 3, is proved given that either A∈C(Rn;Rn)∩Hlocq(Rn;Rn)A\in C(R^n;R^n)\cap H^q_{loc}(R^n;R^n), 2q > n-2, or the Fourier series of the vector potential A:Rn→RnA:R^n\to R^n is absolutely convergent. Here, V^(s)=(V^(s))∗\hat V^{(s)}=(\hat V^{(s)})^* are continuous matrix functions and \hat V^{(s)}\hat \alpha_j=(-1}^s\hat \alpha_j\hat V^{(s)} for all anticommuting Hermitian matrices α^j\hat \alpha_j, α^j2=I^\hat \alpha_j^2=\hat I, s=0,1.Comment: 17 page

    Circular photon drag effect in bulk tellurium

    Full text link
    The circular photon drag effect is observed in a bulk semiconductor. The photocurrent caused by a transfer of both translational and angular momenta of light to charge carriers is detected in tellurium in the mid-infrared frequency range. Dependencies of the photocurrent on the light polarization and on the incidence angle agree with the symmetry analysis of the circular photon drag effect. Microscopic models of the effect are developed for both intra- and inter-subband optical absorption in the valence band of tellurium. The shift contribution to the circular photon drag current is calculated. An observed decrease of the circular photon drag current with increase of the photon energy is explained by the theory for inter-subband optical transitions. Theoretical estimates of the circular photon drag current agree with the experimental data.Comment: 8 pages, 4 figure
    • …
    corecore