22 research outputs found

    Retracted. Lectin-deficient calreticulin retains full functionality as a chaperone for class I histocompatibility molecules

    No full text
    The authors of “Lectin-deficient Calreticulin Retains Full Functionality as a Chaperone for Class I Histocompatibility Molecules” (Mol. Biol. Cell [2008] 19, 2413–2423; originally published in MBoC In Press as 10.1091/mbc.E07-10-1055) wish to retract their paper. They have provided the following statement:Our paper reported that two lectin-deficient mutants of calreticulin retained full ability to support the biogenesis of class I histocompatibility molecules and also bound to the same spectrum of newly synthesized glycoproteins as the wild-type chaperone. During recent efforts to extend this work, we were unable to replicate the results. An investigation detected evidence of contaminating wild-type calreticulin in the original mutant cell lines, contamination that occurred by unknown means in the senior author's laboratory. Consequently, we wish to retract the paper. We continue to work on the nature of the interactions of calreticulin with client glycoproteins and will be publishing thoroughly validated results on this issue in the near future. We offer our most sincere apologies to the scientific community for any difficulties that may have been experienced. All of the authors have agreed to this retraction.Original abstract:Calreticulin is a molecular chaperone of the endoplasmic reticulum that uses both a lectin site specific for Glc1Man5-9GlcNAc2 oligosaccharides and a polypeptide binding site to interact with nascent glycoproteins. The latter mode of substrate recognition is controversial. To examine the relevance of polypeptide binding to protein folding in living cells, we prepared lectin-deficient mutants of calreticulin and examined their abilities to support the assembly and quality control of mouse class I histocompatibility molecules. In cells lacking calreticulin, class I molecules exhibit inefficient loading of peptide ligands, reduced cell surface expression and aberrantly rapid export from the endoplasmic reticulum. Remarkably, expression of calreticulin mutants that are completely devoid of lectin function fully complemented all of the class I biosynthetic defects. We conclude that calreticulin can use nonlectin-based modes of substrate interaction to effect its chaperone and quality control functions on class I molecules in living cells. Furthermore, pulse-chase coimmunoisolation experiments revealed that lectin-deficient calreticulin bound to a similar spectrum of client proteins as wild-type calreticulin and dissociated with similar kinetics, suggesting that lectin-independent interactions are commonplace in cells and that they seem to be regulated during client protein maturation

    Quantifying the relative contributions of different solute carriers to aggregate substrate transport

    No full text
    Determining the contributions of different transporter species to overall cellular transport is fundamental for understanding the physiological regulation of solutes. We calculated the relative activities of Solute Carrier (SLC) transporters using the Michaelis-Menten equation and global fitting to estimate the normalized maximum transport rate for each transporter (Vmax). Data input were the normalized measured uptake of the essential neutral amino acid (AA) L-leucine (Leu) from concentration-dependence assays performed using Xenopus laevis oocytes. Our methodology was verified by calculating Leu and L-phenylalanine (Phe) data in the presence of competitive substrates and/or inhibitors. Among 9 potentially expressed endogenous X. laevis oocyte Leu transporter species, activities of only the uniporters SLC43A2/LAT4 (and/or SLC43A1/LAT3) and the sodium symporter SLC6A19/B(0)AT1 were required to account for total uptake. Furthermore, Leu and Phe uptake by heterologously expressed human SLC6A14/ATB(0,+) and SLC43A2/LAT4 was accurately calculated. This versatile systems biology approach is useful for analyses where the kinetics of each active protein species can be represented by the Hill equation. Furthermore, its applicable even in the absence of protein expression data. It could potentially be applied, for example, to quantify drug transporter activities in target cells to improve specificity

    ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation

    Full text link
    Malnutrition affects up to one billion people in the world and is a major cause of mortality. In many cases, malnutrition is associated with diarrhoea and intestinal inflammation, further contributing to morbidity and death. The mechanisms by which unbalanced dietary nutrients affect intestinal homeostasis are largely unknown. Here we report that deficiency in murine angiotensin I converting enzyme (peptidyl-dipeptidase A) 2 (Ace2), which encodes a key regulatory enzyme of the renin-angiotensin system (RAS), results in highly increased susceptibility to intestinal inflammation induced by epithelial damage. The RAS is known to be involved in acute lung failure, cardiovascular functions and SARS infections. Mechanistically, ACE2 has a RAS-independent function, regulating intestinal amino acid homeostasis, expression of antimicrobial peptides, and the ecology of the gut microbiome. Transplantation of the altered microbiota from Ace2 mutant mice into germ-free wild-type hosts was able to transmit the increased propensity to develop severe colitis. ACE2-dependent changes in epithelial immunity and the gut microbiota can be directly regulated by the dietary amino acid tryptophan. Our results identify ACE2 as a key regulator of dietary amino acid homeostasis, innate immunity, gut microbial ecology, and transmissible susceptibility to colitis. These results provide a molecular explanation for how amino acid malnutrition can cause intestinal inflammation and diarrhoea
    corecore