3 research outputs found

    Three-Dimensional-Printed Molds from Water-Soluble Sulfate Ceramics for Biocomposite Formation through Low-Pressure Injection Molding

    No full text
    Powder mixtures of MgSO4 with 5–20 mol.% Na2SO4 or K2SO4 were used as precursors for making water-soluble ceramic molds to create thermoplastic polymer/calcium phosphate composites by low pressure injection molding. To increase the strength of the ceramic molds, 5 wt.% of tetragonal ZrO2 (Y2O3-stabilized) was added to the precursor powders. A uniform distribution of ZrO2 particles was obtained. The average grain size for Na-containing ceramics ranged from 3.5 ± 0.8 µm for MgSO4/Na2SO4 = 91/9% to 4.8 ± 1.1 µm for MgSO4/Na2SO4 = 83/17%. For K-containing ceramics, the values were 3.5 ± 0.8 µm for all of the samples. The addition of ZrO2 made a significant contribution to the strength of ceramics: for the MgSO4/Na2SO4 = 83/17% sample, the compressive strength increased by 49% (up to 6.7 ± 1.3 MPa), and for the stronger MgSO4/K2SO4 = 83/17% by 39% (up to 8.4 ± 0.6 MPa). The average dissolution time of the ceramic molds in water did not exceed 25 min

    Powder Synthesized from Aqueous Solution of Calcium Nitrate and Mixed-Anionic Solution of Orthophosphate and Silicate Anions for Bioceramics Production

    No full text
    Synthesis from mixed-anionic aqueous solutions is a novel approach to obtain active powders for bioceramics production in the CaO-SiO2-P2O5-Na2O system. In this work, powders were prepared using precipitation from aqueous solutions of the following precursors: Ca(NO3)2 and Na2HPO4 (CaP); Ca(NO3)2 and Na2SiO3 (CaSi); and Ca(NO3)2, Na2HPO4 and Na2SiO3 (CaPSi). Phase composition of the CaP powder included brushite CaHPO4‧2H2O and the CaSi powder included calcium silicate hydrate. Phase composition of the CaPSi powder consisted of the amorphous phase (presumably containing hydrated quasi-amorphous calcium phosphate and calcium silicate phase). All synthesized powders contained NaNO3 as a by-product. The total weight loss after heating up to 1000 °C for the CaP sample—28.3%, for the CaSi sample—38.8% and for the CaPSi sample was 29%. Phase composition of the ceramic samples after the heat treatment at 1000 °C based on the CaP powder contained β-NaCaPO4 and β-Ca2P2O7, the ceramic samples based on the CaSi powder contained α-CaSiO3 and Na2Ca2Si2O7, while the ceramics obtained from the CaPSi powder contained sodium rhenanite β-NaCaPO4, wollastonite α-CaSiO3 and Na3Ca6(PO4)5. The densest ceramic sample was obtained in CaO-SiO2-P2O5-Na2O system at 900 °C from the CaP powder (ρ = 2.53 g/cm3), while the other samples had densities of 0.93 g/cm3 (CaSi) and 1.22 (CaPSi) at the same temperature. The ceramics prepared in this system contain biocompatible and bioresorbable phases, and can be recommended for use in medicine for bone-defect treatment

    Powder Synthesized from Aqueous Solution of Calcium Nitrate and Mixed-Anionic Solution of Orthophosphate and Silicate Anions for Bioceramics Production

    No full text
    Synthesis from mixed-anionic aqueous solutions is a novel approach to obtain active powders for bioceramics production in the CaO-SiO2-P2O5-Na2O system. In this work, powders were prepared using precipitation from aqueous solutions of the following precursors: Ca(NO3)2 and Na2HPO4 (CaP); Ca(NO3)2 and Na2SiO3 (CaSi); and Ca(NO3)2, Na2HPO4 and Na2SiO3 (CaPSi). Phase composition of the CaP powder included brushite CaHPO4‧2H2O and the CaSi powder included calcium silicate hydrate. Phase composition of the CaPSi powder consisted of the amorphous phase (presumably containing hydrated quasi-amorphous calcium phosphate and calcium silicate phase). All synthesized powders contained NaNO3 as a by-product. The total weight loss after heating up to 1000 °C for the CaP sample—28.3%, for the CaSi sample—38.8% and for the CaPSi sample was 29%. Phase composition of the ceramic samples after the heat treatment at 1000 °C based on the CaP powder contained β-NaCaPO4 and β-Ca2P2O7, the ceramic samples based on the CaSi powder contained α-CaSiO3 and Na2Ca2Si2O7, while the ceramics obtained from the CaPSi powder contained sodium rhenanite β-NaCaPO4, wollastonite α-CaSiO3 and Na3Ca6(PO4)5. The densest ceramic sample was obtained in CaO-SiO2-P2O5-Na2O system at 900 °C from the CaP powder (ρ = 2.53 g/cm3), while the other samples had densities of 0.93 g/cm3 (CaSi) and 1.22 (CaPSi) at the same temperature. The ceramics prepared in this system contain biocompatible and bioresorbable phases, and can be recommended for use in medicine for bone-defect treatment
    corecore