14 research outputs found
At risk of being risky: The relationship between "brain age" under emotional states and risk preference.
Developmental differences regarding decision making are often reported in the absence of emotional stimuli and without context, failing to explain why some individuals are more likely to have a greater inclination toward risk. The current study (N=212; 10-25y) examined the influence of emotional context on underlying functional brain connectivity over development and its impact on risk preference. Using functional imaging data in a neutral brain-state we first identify the "brain age" of a given individual then validate it with an independent measure of cortical thickness. We then show, on average, that "brain age" across the group during the teen years has the propensity to look younger in emotional contexts. Further, we show this phenotype (i.e. a younger brain age in emotional contexts) relates to a group mean difference in risk perception - a pattern exemplified greatest in young-adults (ages 18-21). The results are suggestive of a specified functional brain phenotype that relates to being at "risk to be risky.
Consider the Source: Adolescents and Adults Similarly Follow Older Adult Advice More than Peer Advice
<div><p>Individuals learn which of their actions are likely to be rewarded through trial and error. This form of learning is critical for adapting to new situations, which adolescents frequently encounter. Adolescents are also greatly influenced by their peers. The current study tested the extent to which adolescents rely on peer advice to guide their actions. Adolescent and young adult participants completed a probabilistic learning task in which they chose between four pairs of stimuli with different reinforcement probabilities, with one stimulus in each pair more frequently rewarded. Participants received advice about two of these pairs, once from a similarly aged peer and once from an older adult. Crucially, this advice was inaccurate, enabling the dissociation between experience-based and instruction-based learning. Adolescents and adults learned equally well from experience and no age group difference was evident in the overall influence of advice on choices. Surprisingly, when considering the source of advice, there was no evident influence of peer advice on adolescent choices. However, both adolescents and adults were biased toward choosing the stimulus recommended by the older adult. Contrary to conventional wisdom, these data suggest that adolescents may prioritize the advice of older adults over that of peers in certain decision-making contexts.</p></div
The Impact of Emotional States on Cognitive Control Circuitry and Function
Typically in the laboratory, cognitive and emotional processes are studied separately or as a stream of fleeting emotional stimuli embedded within a cognitive task. Yet in life, thoughts and actions often occur in more lasting emotional states of arousal. The current study examines the impact of emotions on actions using a novel behavioral paradigm and functional neuroimaging to assess cognitive control under sustained states of threat (anticipation of an aversive noise) and excitement (anticipation of winning money). Thirty-eight healthy adult participants were scanned while performing an emotional go/no-go task with positive (happy faces), negative (fearful faces), and neutral (calm faces) emotional cues, under threat or excitement. Cognitive control performance was enhanced during the excited state relative to a nonarousing control condition. This enhanced performance was paralleled by heightened activity of frontoparietal and frontostriatal circuitry. In contrast, under persistent threat, cognitive control was diminished when the valence of the emotional cue conflicted with the emotional state. Successful task performance in this conflicting emotional condition was associated with increased activity in the posterior cingulate cortex, a default mode network region implicated in complex processes such as processing emotions in the context of self and monitoring performance. This region showed positive coupling with frontoparietal circuitry implicated in cognitive control, providing support for a role of the posterior cingulate cortex in mobilizing cognitive resources to improve performance. These findings suggest that emotional states of arousal differentially modulate cognitive control and point to the potential utility of this paradigm for understanding effects of situational and pathological states of arousal on behavior
Test phase advice preference.
<p>For equally rewarded stimuli (D, F and H had a 30% reward probability), both age groups show a preference for the adult recommended (H), but not the peer recommended (F) stimulus, when compared to the uninstructed (D) stimulus. Error bars represent SEM.</p
Test phase instruction biases.
<p>Older adult advice biased both adolescents and adults, while neither group were biased by peer advice. Error bars represent SEM.</p
Learning phase performance.
<p>Choice performance was measured as the percentage of trials in which participants selected the most frequently rewarded stimulus of each pair (% optimal choice), presented in 10-trial blocks. Both adolescents (black) and adults (white) progressively learned the estimated value of the stimuli; by the end of the learning phase, they were significantly better than chance at choosing the optimal stimuli. Error bars represent SEM.</p
Recommended from our members
The Impact of Emotional States on Cognitive Control Circuitry and Function
Typically in the laboratory, cognitive and emotional processes are studied separately or as a stream of fleeting emotional stimuli embedded within a cognitive task. Yet in life, thoughts and actions often occur in more lasting emotional states of arousal. The current study examines the impact of emotions on actions using a novel behavioral paradigm and functional neuroimaging to assess cognitive control under sustained states of threat (anticipation of an aversive noise) and excitement (anticipation of winning money). Thirty-eight healthy adult participants were scanned while performing an emotional go/no-go task with positive (happy faces), negative (fearful faces), and neutral (calm faces) emotional cues, under threat or excitement. Cognitive control performance was enhanced during the excited state relative to a nonarousing control condition. This enhanced performance was paralleled by heightened activity of frontoparietal and frontostriatal circuitry. In contrast, under persistent threat, cognitive control was diminished when the valence of the emotional cue conflicted with the emotional state. Successful task performance in this conflicting emotional condition was associated with increased activity in the posterior cingulate cortex, a default mode network region implicated in complex processes such as processing emotions in the context of self and monitoring performance. This region showed positive coupling with frontoparietal circuitry implicated in cognitive control, providing support for a role of the posterior cingulate cortex in mobilizing cognitive resources to improve performance. These findings suggest that emotional states of arousal differentially modulate cognitive control and point to the potential utility of this paradigm for understanding effects of situational and pathological states of arousal on behavior
Peer and older adult instruction biases.
<p>Instruction bias scores were calculated by comparing performance on equally valued but differentially instructed pairs, averaging an easier (80% versus 30%) and harder (30% versus 20%) comparison. Peer and older adult instruction bias scores quantified the extent to which either source of advice biased participants’ baseline tendency to choose the higher valued option.</p
Individual differences in frontolimbic circuitry and anxiety emerge with adolescent changes in endocannabinoid signaling across species.
Anxiety disorders peak in incidence during adolescence, a developmental window that is marked by dynamic changes in gene expression, endocannabinoid signaling, and frontolimbic circuitry. We tested whether genetic alterations in endocannabinoid signaling related to a common polymorphism in fatty acid amide hydrolase (FAAH), which alters endocannabinoid anandamide (AEA) levels, would impact the development of frontolimbic circuitry implicated in anxiety disorders. In a pediatric imaging sample of over 1,000 3- to 21-y-olds, we show effects of the FAAH genotype specific to frontolimbic connectivity that emerge by ∼12 y of age and are paralleled by changes in anxiety-related behavior. Using a knock-in mouse model of the FAAH polymorphism that controls for genetic and environmental backgrounds, we confirm phenotypic differences in frontoamygdala circuitry and anxiety-related behavior by postnatal day 45 (P45), when AEA levels begin to decrease, and also, at P75 but not before. These results, which converge across species and level of analysis, highlight the importance of underlying developmental neurobiology in the emergence of genetic effects on brain circuitry and function. Moreover, the results have important implications for the identification of risk for disease and precise targeting of treatments to the biological state of the developing brain as a function of developmental changes in gene expression and neural circuit maturation
Recommended from our members
When Is an Adolescent an Adult? Assessing Cognitive Control in Emotional and Nonemotional Contexts.
An individual is typically considered an adult at age 18, although the age of adulthood varies for different legal and social policies. A key question is how cognitive capacities relevant to these policies change with development. The current study used an emotional go/no-go paradigm and functional neuroimaging to assess cognitive control under sustained states of negative and positive arousal in a community sample of one hundred ten 13- to 25-year-olds from New York City and Los Angeles. The results showed diminished cognitive performance under brief and prolonged negative emotional arousal in 18- to 21-year-olds relative to adults over 21. This reduction in performance was paralleled by decreased activity in fronto-parietal circuitry, implicated in cognitive control, and increased sustained activity in the ventromedial prefrontal cortex, involved in emotional processes. The findings suggest a developmental shift in cognitive capacity in emotional situations that coincides with dynamic changes in prefrontal circuitry. These findings may inform age-related social policies