33 research outputs found

    SOLENOPSIS INVICTA VIRUS (SINV-1) INFECTION AND INSECTICIDE INTERACTIONS IN THE RED IMPORTED FIRE ANT (HYMENOPTERA: FORMICIDAE)

    Get PDF
    Controlling invasive species is a growing concern; however, pesticides can be detrimental for non-target organisms. The red imported fire ant (Solenopsis invicta Buren; Hymenoptera: Formicidae) has aggressively invaded ~138 million ha in the USA and causes over $6 billion in damage and control efforts annually (Valles 2011). Myriad research studies have been conducted to discover safe biological control agents to manage these invasive pests (Valles et al. 2004; Milks et al. 2008; Oi et al. 2009; Yang et al. 2009; Wang et al. 2010; Callcott et al. 2011; Porter et al. 2011; Tufts et al. 2011). Viruses may be lethal due to modifications of cellular processes and induction of defense responses or may produce distinct survival outcomes depending on species (i.e. ascoviruses) (Stasiak et al. 2005). The Solenopsis invicta virus (SINV-1) is a positive sense, single-stranded RNA virus, which can only infect the genus Solenopsis at all stages of development, and is verticallytransmitted within a colony (Valles et al. 2004; Valles 2012)

    Ecological interactions driving population dynamics of two tick-borne pathogens, Borrelia burgdorferi and Babesia microti

    Get PDF
    DATA ACCESSIBILITY : Code is available in the supplemental materials document and on GitHub (see https://github.com/cowparsley/borrelia-babesia-eco-epi). Data files are available from Dryad [89].Borrelia burgdorferi (Bb) and Babesia microti (Bm) are vector-borne zoonotic pathogens commonly found co-circulating in Ixodes scapularis and Peromyscus leucopus populations. The restricted distribution and lower prevalence of Bm has been historically attributed to lower host-to-tick transmission efficiency and limited host ranges. We hypothesized that prevalence patterns are driven by coinfection dynamics and vertical transmission. We use a multi-year, multiple location, longitudinal dataset with mathematical modelling to elucidate coinfection dynamics between Bb and Bm in natural populations of P. leucopus, the most competent reservoir host for both pathogens in the eastern USA. Our analyses indicate that, in the absence of vertical transmission, Bb is viable at lower tick numbers than Bm. However, with vertical transmission, Bm is viable at lower tick numbers than Bb. Vertical transmission has a particularly strong effect on Bm prevalence early in the active season while coinfection has an increasing role during the nymphal peak. Our analyses indicate that coinfection processes, such as facilitation of Bm infection by Bb, have relatively little influence on the persistence of either parasite. We suggest future work examines the sensitivity of Bm vertical transmission and other key processes to local environmental conditions to inform surveillance and control of tick-borne pathogens.The National Institute of Health, the Ecology and Evolution of Infectious Diseases Program and the National Science Foundation.https://royalsocietypublishing.org/journal/rspbhj2024Veterinary Tropical DiseasesSDG-03:Good heatlh and well-beingSDG-15:Life on lan

    Host-pathogen associations inferred from bloodmeal analyses of Ixodes scapularis ticks in a low biodiversity setting

    Get PDF
    Tick-borne pathogen emergence is dependent on the abundance and distribution of competent hosts in the environment. Ixodes scapularis ticks are generalist feeders, and their pathogen infection prevalence depends on their relative feeding on local competent and non-competent hosts. The ability to determine what host a larval life stage tick fed on can help predict infection prevalence, emergence, and spread of certain tick-borne pathogens and the risks posed to public health. Here, we use a newly developed genomic target-based technique to detect the source of larval bloodmeals by sampling questing nymphs from Block Island, RI, a small island with a depauperate mammalian community. We used previously designed specific assays to target all known hosts on this island and analyzed ticks for four human pathogenic tick-borne pathogens. We determined the highest proportion of larvae fed on avian species (42.34%), white-footed mice (36.94%), and white-tailed deer (20.72%) and occasionally fed on feral cats, rats, and voles, which are in low abundance on Block Island. Additionally, larvae that had fed on white-footed mice were significantly more likely to be infected with Borrelia burgdorferi and Babesia microti, while larvae that had fed on white-footed mice or white-tailed deer were significantly more likely to be infected with, respectively, mouse- and deer-associated genotypes of Anaplasma phagocytophilum. The ability to detect a nymph’s larval host allows for a better understanding of tick feeding behavior, host distribution, pathogen prevalence, and zoonotic risks to humans, which can contribute to better tick management strategies. IMPORTANCE : Tick-borne diseases, such as Lyme disease, babesiosis, and anaplasmosis, pose significant public health burdens. Tick bloodmeal analysis provides a noninvasive sampling method to evaluate tick-host associations and combined with a zoonotic pathogen assay, can generate crucial insights into the epidemiology and transmission of tick-borne diseases by identifying potential key maintenance hosts. We investigated the bloodmeals of questing Ixodes scapularis nymphs. We found that avian hosts, white-footed mice, and white-tailed deer fed the majority of larval ticks and differentially contributed to the prevalence of multiple tick-borne pathogens and pathogen genotypes in a low biodiversity island setting. Unraveling the intricate network of host-vector-pathogen interactions will contribute to improving wildlife management and conservation efforts, to developing targeted surveillance, and vector and host control efforts, ultimately reducing the incidence of tick-borne diseases and improving public health.The National Science Foundation/National Institute of Health Ecology and Evolution of Infectious Diseases.https://journals.asm.org/journal/aemhj2024Veterinary Tropical DiseasesSDG-03:Good heatlh and well-beingSDG-15:Life on lan

    Closely-related Borrelia burgdorferi (sensu stricto) strains exhibit similar fitness in single infections and asymmetric competition in multiple infections

    Get PDF
    Wild hosts are commonly co-infected with complex, genetically diverse, pathogen communities. Competition is expected between genetically or ecologically similar pathogen strains which may influence patterns of coexistence. However, there is little data on how specific strains of these diverse pathogen species interact within the host and how this impacts pathogen persistence in nature. Ticks are the most common disease vector in temperate regions with Borrelia burgdorferi, the causative agent of Lyme disease, being the most common vector-borne pathogen in North America. Borrelia burgdorferi is a pathogen of high public health concern and there is significant variation in infection phenotype between strains, which influences predictions of pathogen dynamics and spread.In a laboratory experiment, we investigated whether two closely-related strains of B. burgdorferi (sensu stricto) showed similar transmission phenotypes, how the transmission of these strains changed when a host was infected with one strain, re-infected with the same strain, or co-infected with two strains. Ixodes scapularis, the black-legged tick, nymphs were used to sequentially infect laboratory-bred Peromyscus leucopus, white-footed mice, with one strain only, homologous infection with the same stain, or heterologous infection with both strains. We used the results of this laboratory experiment to simulate long-term persistence and maintenance of each strain in a simple simulation model.Strain LG734 was more competitive than BL206, showing no difference in transmission between the heterologous infection groups and single-infection controls, while strain BL206 transmission was significantly reduced when strain LG734 infected first. The results of the model show that this asymmetry in competition could lead to extinction of strain BL206 unless there was a tick-to-host transmission advantage to this less competitive strain.This asymmetric competitive interaction suggests that strain identity and the biotic context of co-infection is important to predict strain dynamics and persistence

    Epistasis Constrains Mutational Pathways of Hemoglobin Adaptation in High-Altitude Pikas

    Get PDF
    A fundamental question in evolutionary genetics concerns the roles of mutational pleiotropy and epistasis in shaping trajectories of protein evolution. This question can be addressed most directly by using site-directed mutagenesis to explore the mutational landscape of protein function in experimentally defined regions of sequence space. Here, we evaluate how pleiotropic trade-offs and epistatic interactions influence the accessibility of alternative mutational pathways during the adaptive evolution of hemoglobin (Hb) function in high-altitude pikas (Mammalia: Lagomorpha). By combining ancestral protein resurrection with a combinatorial protein-engineering approach, we examined the functional effects of sequential mutational steps in all possible pathways that produced an increased Hb–O2 affinity. These experiments revealed that the effects of mutations on Hb–O2affinity are highly dependent on the temporal order in which they occur: Each of three -β chain substitutions produced a significant increase in Hb–O2 affinity on the ancestral genetic background, but two of these substitutions produced opposite effects when they occurred as later steps in the pathway. The experiments revealed pervasive epistasis for Hb–O2 affinity, but affinity-altering mutations produced no significant pleiotropic trade-offs. These results provide insights into the properties of adaptive substitutions in naturally evolved proteins and suggest that the accessibility of alternative mutational pathways may be more strongly constrained by sign epistasis for positively selected biochemical phenotypes than by antagonistic pleiotropy

    Host tropism determination by convergent evolution of immunological evasion in the Lyme disease system [preprint]

    Get PDF
    Microparasites selectively adapt in some hosts, known as host tropism. Transmitted through ticks and carried mainly by mammals and birds, the Lyme disease (LD) bacterium is a well-suited model to study such tropism. LD bacteria species vary in host ranges through mechanisms eluding characterization. By feeding ticks infected with different LD bacteria species, utilizing feeding chambers and live mice and quail, we found species-level differences of bacterial transmission. These differences localize on the tick blood meal, and complement, a defense in vertebrate blood, and a bacterial polymorphic protein, CspA, which inactivates complement by binding to a host complement inhibitor, FH. CspA selectively confers bacterial transmission to vertebrates that produce FH capable of allele-specific recognition. Phylogenetic analyses revealed convergent evolution as the driver of such findings, which likely emerged during the last glacial maximum. Our results identify LD bacterial determinants of host tropism, defining an evolutionary mechanism that shapes host-microparasite associations

    Host tropism determination by convergent evolution of immunological evasion in the Lyme disease system

    Get PDF
    Pathogens possess the ability to adapt and survive in some host species but not in others-an ecological trait known as host tropism. Transmitted through ticks and carried mainly by mammals and birds, the Lyme disease (LD) bacterium is a well-suited model to study such tropism. Three main causative agents of LD, Borrelia burgdorferi, B. afzelii, and B. garinii, vary in host ranges through mechanisms eluding characterization. By feeding ticks infected with different Borrelia species, utilizing feeding chambers and live mice and quail, we found species-level differences in bacterial transmission. These differences localize on the tick blood meal, and specifically complement, a defense in vertebrate blood, and a polymorphic bacterial protein, CspA, which inactivates complement by binding to a host complement inhibitor, Factor H (FH). CspA selectively confers bacterial transmission to vertebrates that produce FH capable of allele-specific recognition. CspA is the only member of the Pfam54 gene family to exhibit host-specific FH-binding. Phylogenetic analyses revealed convergent evolution as the driver of such uniqueness, and that FH-binding likely emerged during the last glacial maximum. Our results identify a determinant of host tropism in Lyme disease infection, thus defining an evolutionary mechanism that shapes host-pathogen associations

    Epistasis Constrains Mutational Pathways of Hemoglobin Adaptation in High-Altitude Pikas

    Get PDF
    A fundamental question in evolutionary genetics concerns the roles of mutational pleiotropy and epistasis in shaping trajectories of protein evolution. This question can be addressed most directly by using site-directed mutagenesis to explore the mutational landscape of protein function in experimentally defined regions of sequence space. Here, we evaluate how pleiotropic trade-offs and epistatic interactions influence the accessibility of alternative mutational pathways during the adaptive evolution of hemoglobin (Hb) function in high-altitude pikas (Mammalia: Lagomorpha). By combining ancestral protein resurrection with a combinatorial protein-engineering approach, we examined the functional effects of sequential mutational steps in all possible pathways that produced an increased Hb–O2 affinity. These experiments revealed that the effects of mutations on Hb–O2affinity are highly dependent on the temporal order in which they occur: Each of three -β chain substitutions produced a significant increase in Hb–O2 affinity on the ancestral genetic background, but two of these substitutions produced opposite effects when they occurred as later steps in the pathway. The experiments revealed pervasive epistasis for Hb–O2 affinity, but affinity-altering mutations produced no significant pleiotropic trade-offs. These results provide insights into the properties of adaptive substitutions in naturally evolved proteins and suggest that the accessibility of alternative mutational pathways may be more strongly constrained by sign epistasis for positively selected biochemical phenotypes than by antagonistic pleiotropy

    A set of diagnostic tests for detection of active Babesia duncani infection

    Get PDF
    OBJECTIVES : Human babesiosis is an emerging and potentially fatal tick-borne disease caused by intraerythrocytic parasites of the Babesia genus. Among these, Babesia duncani is particularly notable for causing severe and life-threatening illness in humans. Accurate diagnosis and effective disease management hinge on the detection of active B. duncani infections. While molecular assays are available to detect the parasite in blood, a reliable method for identifying biomarkers of active infection remains elusive. METHODS : We developed the first B. duncani antigen capture assays, targeting two immunodominant antigens, BdV234 and BdV38. These assays were validated using established in vitro and in vivo B. duncani infection models, and following drug treatment. RESULTS : The assays demonstrated no cross-reactivity with other species such as B. microti, B. divergens, Babesia MO1, or Plasmodium falciparum , and can detect as few as 115 infected erythrocytes/µl of blood. Screening of 1731 blood samples from various biorepositories, including samples previously identified as Lyme and/or B. microti -positive, as well as new specimens from wild mice, revealed no evidence of B. duncani infection or cross-reactivity. CONCLUSIONS : These assays hold significant promise for various applications, including point-of-care testing for the early detection of B. duncani in patients, field tests for screening reservoir hosts, and high-throughput screening of blood samples intended for transfusion.The Global Lyme Alliance Foundation; National Institute of Health grants; the Steven and Alexandra Cohen Foundation and The Blavatnik Family Foundation.http://www.elsevier.com/locate/ijidhj2024Veterinary Tropical DiseasesSDG-03:Good heatlh and well-bein
    corecore