4 research outputs found

    Implementation of a patient-centered remote wound monitoring system for management of diabetic foot ulcers

    Get PDF
    BackgroundRegular clinical assessment is critical to optimize lower extremity wound healing. However, family and work obligations, socioeconomic, transportation, and time barriers often limit patient follow-up. We assessed the feasibility of a novel, patient-centered, remote wound management system (Healthy.io Minuteful for Wound Digital Management System) for the surveillance of lower extremity wounds.MethodsWe enrolled 25 patients from our outpatient multidisciplinary limb preservation clinic with a diabetic foot ulcer, who had undergone revascularization and podiatric interventions prior to enrollment. Patients and their caregivers were instructed on how to use the digital management system and asked to perform one at-home wound scan per week for a total of 8 weeks using a smartphone application. We collected prospective data on patient engagement, smartphone app useability, and patient satisfaction.ResultsTwenty-five patients (mean age 65.5 ± 13.7 years, 60.0% male, 52.0% Black) were enrolled over 3 months. Mean baseline wound area was 18.0 ± 15.2 cm2, 24.0% of patients were recovering from osteomyelitis, and post-surgical WiFi stage was 1 in 24.0%, 2 in 40.0%, 3 in 28.0%, and 4 in 8.00% of patients. We provided a smartphone to 28.0% of patients who did not have access to one that was compatible with the technology. Wound scans were obtained by patients (40.0%) and caregivers (60.0%). Overall, 179 wound scans were submitted through the app. The mean number of wound scans acquired per patient was 0.72 ± 0.63 per week, for a total mean of 5.80 ± 5.30 scans over the course of 8 weeks. Use of the digital wound management system triggered an early change in wound management for 36.0% of patients. Patient satisfaction was high; 94.0% of patients reported the system was useful.ConclusionThe Healthy.io Minuteful for Wound Digital Management System is a feasible means of remote wound monitoring for use by patients and/or their caregivers

    Validation of an Automatic Tagging System for Identifying Respiratory and Hemodynamic Deterioration Events in the Intensive Care Unit

    Get PDF
    Objective: Predictive models for critical events in the intensive care unit (ICU) might help providers anticipate patient deterioration. At the heart of predictive model development lies the ability to accurately label significant events, thereby facilitating the use of machine learning and similar strategies. We conducted this study to establish the validity of an automated system for tagging respiratory and hemodynamic deterioration by comparing automatic tags to tagging by expert reviewers. Methods: This retrospective cohort study included 72,650 unique patient stays collected from Electronic Medical Records of the University of Massachusetts\u27 eICU. An enriched subgroup of stays was manually tagged by expert reviewers. The tags generated by the reviewers were compared to those generated by an automated system. RESULTS: The automated system was able to rapidly and efficiently tag the complete database utilizing available clinical data. The overall agreement rate between the automated system and the clinicians for respiratory and hemodynamic deterioration tags was 89.4% and 87.1%, respectively. The automatic system did not add substantial variability beyond that seen among the reviewers. Conclusions: We demonstrated that a simple rule-based tagging system could provide a rapid and accurate tool for mass tagging of a compound database. These types of tagging systems may replace human reviewers and save considerable resources when trying to create a validated, labeled database used to train artificial intelligence algorithms. The ability to harness the power of artificial intelligence depends on efficient clinical validation of targeted conditions; hence, these systems and the methodology used to validate them are crucial
    corecore