25 research outputs found

    Robust High-Dynamic-Range Vector Magnetometry via Nitrogen-Vacancy Centers in Diamond

    Full text link
    We demonstrate a robust, scale-factor-free vector magnetometer, which uses a closed-loop frequency-locking scheme to simultaneously track Zeeman-split resonance pairs of nitrogen-vacancy (NV) centers in diamond. Compared with open-loop methodologies, this technique is robust against fluctuations in temperature, resonance linewidth, and contrast; offers a three-order-of-magnitude increase in dynamic range; and allows for simultaneous interrogation of multiple transition frequencies. By directly detecting the resonance frequencies of NV centers aligned along each of the diamond's four tetrahedral crystallographic axes, we perform full vector reconstruction of an applied magnetic field

    Remote Sensing and Control of Phase Qubits

    Full text link
    We demonstrate a remote sensing design of phase qubits by separating the control and readout circuits from the qubit loop. This design improves measurement reliability because the control readout chip can be fabricated using more robust materials and can be reused to test different qubit chips. Typical qubit measurements such as Rabi oscillations, spectroscopy, and excited-state energy relaxation are presented.Comment: 3 pages, 4 figure

    Diamond-nitrogen-vacancy electronic and nuclear spin-state anticrossings under weak transverse magnetic fields

    Get PDF
    We report on detailed studies of electronic and nuclear spin states in the diamond-nitrogen-vacancy (NV) center under weak transverse magnetic fields. We numerically predict and experimentally verify a previously unobserved NV hyperfine level anticrossing (LAC) occurring at bias fields of tens of gauss—two orders of magnitude lower than previously reported LACs at ∼ 500 and ∼ 1000 G axial magnetic fields. We then discuss how the NV ground-state Hamiltonian can be manipulated in this regime to tailor the NV's sensitivity to environmental factors and to map into the nuclear spin state.United States. Dept. of Defense. Assistant Secretary of Defense for Research & Engineering (Air Force Contract No. FA8721-05-C-0002)United States. Office of Naval Research (N00014-13-1-0316)United States. National Aeronautics and Space Administration ( Office of the Chief Technologist’s Space Technology Research Fellowship

    High-sensitivity spin-based electrometry with an ensemble of nitrogen-vacancy centers in diamond

    Get PDF
    We demonstrate a spin-based, all-dielectric electrometer based on an ensemble of nitrogen-vacancy (NV[superscript −]) defects in diamond. An applied electric field causes energy-level shifts symmetrically away from the NV[superscript −]'s degenerate triplet states via the Stark effect; this symmetry provides immunity to temperature fluctuations allowing for shot-noise-limited detection. Using an ensemble of NV[superscript −]s, we demonstrate shot-noise-limited sensitivities approaching 1 (V/cm)/√Hz under ambient conditions, at low frequencies (<10 Hz), and over a large dynamic range (20 dB). A theoretical model for the ensemble of NV[superscript −]s fits well with measurements of the ground-state electric susceptibility parameter 〈k[subscript ⊥]〉. Implications of spin-based, dielectric sensors for micron-scale electric-field sensing are discussed.United States. National Aeronautics and Space Administration. Office of Chief Technologist (Space Technology Research Fellowship)United States. Air Force Office of Scientific Research. Presidential Early Career Award in Science and Engineerin
    corecore