54 research outputs found

    Distinguishing Dark Matter Cusps from Cores using Globular Clusters

    Full text link
    Globular Clusters (GCs) provide valuable insight into the properties of their host galaxies' dark matter halos. Using N-body simulations incorporating semianalytic dynamical friction and GC-GC merger prescriptions, we study the evolution of GC radial distributions and mass functions in cuspy and cored dark matter halos. Modeling the dynamics of the GC-rich system in the dwarf galaxy UGC7369, we find that friction-induced inspiral and subsequent mergers of massive GCs can naturally and robustly explain the mass segregation of the GCs and the existence of a nuclear star cluster (NSC). However, the multiple mergers required to form the NSC only take place when the dark matter halo is cuspy. In a cored halo, stalling of the dynamical friction within the core halts the inspiral of the GCs, and so the GC merger rate falls significantly, precluding the formation of an NSC. We therefore argue that the presence of an NSC requires a cusp in UGC7369. More generally, we propose that the presence of an NSC and the corresponding alteration of the GC mass function due to mergers may be used as an indicator of a cuspy halo for galaxies in which we expect NSC formation to be merger-dominated. These observables represent a simple, powerful complement to other inner halo density profile constraint techniques, and should allow for straightforward extension to larger samples.Comment: 19 pages, 11 figures. Main results in figures 7 and 8. Submitted to ApJ, comments are welcome

    Constrain the Dark Matter Distribution of Ultra-diffuse Galaxies with Globular-Cluster Mass Segregation: A Case Study with NGC5846-UDG1

    Full text link
    The properties of globular clusters (GCs) contain valuable information of their host galaxies and dark-matter halos. In the remarkable example of ultra-diffuse galaxy, NGC5846-UDG1, the GC population exhibits strong radial mass segregation, indicative of dynamical-friction-driven orbital decay, which opens the possibility of using imaging data alone to constrain the dark-matter content of the galaxy. To explore this possibility, we develop a semi-analytical model of GC evolution, which starts from the initial mass function, the initial structure-mass relation, and the initial spatial distribution of the GC progenitors, and follows the effects of dynamical friction, tidal evolution, and two-body relaxation. Using Markov Chain Monte Carlo, we forward-model the GCs in a NGC5846-UDG1-like potential to match the observed GC mass, size, and spatial distributions, and to constrain the profile of the host halo and the origin of the GCs. We find that, with the assumptions of zero mass segregation when the star clusters were born, NGC5846-UDG1 is relatively dark-matter poor compared to what is expected from stellar-to-halo-mass relations, and its halo concentration is lower than the cosmological average, irrespective of having a cuspy or a cored profile. Its GC population has an initial spatial distribution more extended than the smooth stellar distribution. We discuss the results in the context of scaling laws of galaxy-halo connections, and warn against naively using the GC-abundance-halo-mass relation to infer the halo mass of UDGs. Our model is generally applicable to GC-rich dwarf galaxies, and is publicly available at https://github.com/JiangFangzhou/GCevo.Comment: 27 pages, 15 figures, ApJ accepte

    ELVES III: Environmental Quenching by Milky Way-Mass Hosts

    Full text link
    Isolated dwarf galaxies usually exhibit robust star formation but satellite dwarf galaxies are often devoid of young stars, even in Milky Way-mass groups. Dwarf galaxies thus offer an important laboratory of the environmental processes that cease star formation. We explore the balance of quiescent and star-forming galaxies (quenched fractions) for a sample of ~400 satellite galaxies around 30 Local Volume hosts from the Exploration of Local VolumE Satellites (ELVES) Survey. We present quenched fractions as a function of satellite stellar mass, projected radius, and host halo mass, to conclude that overall, the quenched fractions are similar to the Milky Way, dropping below 50% at satellite M* ~ 10^8 M_sun. We may see hints that quenching is less efficient at larger radius. Through comparison with the semi-analytic modeling code satgen, we are also able to infer average quenching times as a function of satellite mass in host halo-mass bins. There is a gradual increase in quenching time with satellite stellar mass rather than the abrupt change from rapid to slow quenching that has been inferred for the Milky Way. We also generally infer longer average quenching times than recent hydrodynamical simulations. Our results are consistent with models that suggest a wide range of quenching times are possible via ram-pressure stripping, depending on the clumpiness of the circumgalactic medium, the orbits of the satellites, and the degree of earlier preprocessing.Comment: 18 pages, 12 figures, replaced post-refereeing, no major change

    ELVES IV: The Satellite Stellar-to-Halo Mass Relation Beyond the Milky-Way

    Full text link
    Quantifying the connection between galaxies and their host dark matter halos has been key for testing cosmological models on various scales. Below M109MM_\star \sim 10^9\,M_\odot, such studies have primarily relied on the satellite galaxy population orbiting the Milky Way. Here we present new constraints on the connection between satellite galaxies and their host dark matter subhalos using the largest sample of satellite galaxies in the Local Volume (D12MpcD \lesssim 12\,\mathrm{Mpc}) to date. We use 250250 confirmed and 7171 candidate dwarf satellites around 27 Milky Way (MW)-like hosts from the Exploration of Local VolumE Satellites (ELVES) Survey and use the semi-analytical SatGen model for predicting the population of dark matter subhalos expected in the same volume. Through a Bayesian model comparison of the observed and the forward-modeled satellite stellar mass functions (SSMF), we infer the satellite stellar-to-halo mass relation. We find that the observed SSMF is best reproduced when subhalos at the low mass end are populated by a relation of the form MMpeakαM_\star \propto M^\alpha_\mathrm{peak}, with a moderate slope of αconst=2.10±0.01\alpha_\mathrm{const}=2.10 \pm 0.01 and a low scatter, constant as a function of the peak halo mass, of σconst=0.060.05+0.07\sigma_\mathrm{const}=0.06^{+0.07}_{-0.05}. A model with a steeper slope (αgrow=2.39±0.06\alpha_\mathrm{grow}=2.39 \pm 0.06) and a scatter that grows with decreasing MpeakM_\mathrm{peak} is also consistent with the observed SSMF but is not required. Our new model for the satellite-subhalo connection, based on hundreds of Local Volume satellite galaxies, is in line with what was previously derived using only the Milky Way satellites.Comment: Accepted for publication in ApJ. Figure 8 shows the key result -- the Satellite Stellar to Halo Mass relation obtained in this work, in comparison to previous studie
    corecore