30 research outputs found
Overcoming TGFβ-mediated immune evasion in cancer
This Review discusses the context-dependent functions of transforming growth factor-beta (TGF beta) with regard to the composition and behaviour of different cell populations in the tumour immune microenvironment, as well as emerging data that demonstrate that TGF beta inhibition can restore cancer immunity. Transforming growth factor-beta (TGF beta) signalling controls multiple cell fate decisions during development and tissue homeostasis; hence, dysregulation of this pathway can drive several diseases, including cancer. Here we discuss the influence that TGF beta exerts on the composition and behaviour of different cell populations present in the tumour immune microenvironment, and the context-dependent functions of this cytokine in suppressing or promoting cancer. During homeostasis, TGF beta controls inflammatory responses triggered by exposure to the outside milieu in barrier tissues. Lack of TGF beta exacerbates inflammation, leading to tissue damage and cellular transformation. In contrast, as tumours progress, they leverage TGF beta to drive an unrestrained wound-healing programme in cancer-associated fibroblasts, as well as to suppress the adaptive immune system and the innate immune system. In consonance with this key role in reprogramming the tumour microenvironment, emerging data demonstrate that TGF beta-inhibitory therapies can restore cancer immunity. Indeed, this approach can synergize with other immunotherapies - including immune checkpoint blockade - to unleash robust antitumour immune responses in preclinical cancer models. Despite initial challenges in clinical translation, these findings have sparked the development of multiple therapeutic strategies that inhibit the TGF beta pathway, many of which are currently in clinical evaluation
Targeting the Microenvironment in Advanced Colorectal Cancer
Colorectal cancer (CRC) diagnosis often occurs at late stages when tumor cells have already disseminated. Current therapies are poorly effective for metastatic disease, the main cause of death in CRC. Despite mounting evidence implicating the tumor microenvironment in CRC progression and metastasis, clinical practice remains predominantly focused on targeting the epithelial compartment. Because CRCs remain largely refractory to current therapies, we must devise alternative strategies. Transforming growth factor (TGF)-β has emerged as a key architect of the microenvironment in poor-prognosis cancers. Disseminated tumor cells show a strong dependency on a TGF-β-activated stroma during the establishment and subsequent expansion of metastasis. We review and discuss the development of integrated approaches focused on targeting the ecosystem of poor-prognosis CRCs
Mutant TP53 switches therapeutic vulnerability during gastric cancer progression within interleukin-6 family cytokines
Although aberrant activation of the KRAS and PI3K pathway alongside TP53 mutations account for frequent aberrations in human gastric cancers, neither the sequence nor the individual contributions of these mutations have been clarified. Here, we establish an allelic series of mice to afford conditional expression in the glandular epithelium of Kras G12D;Pik3ca H1047R or Trp53 R172H and/or ablation of Pten or Trp53. We find that Kras G12D;Pik3ca H1047R is sufficient to induce adenomas and that lesions progress to carcinoma when also harboring Pten deletions. An additional challenge with either Trp53 loss- or gain-of-function alleles further accelerated tumor progression and triggered metastatic disease. While tumor-intrinsic STAT3 signaling in response to gp130 family cytokines remained as a gatekeeper for all stages of tumor development, metastatic progression required a mutant Trp53-induced interleukin (IL)-11 to IL-6 dependency switch. Consistent with the poorer survival of patients with high IL-6 expression, we identify IL-6/STAT3 signaling as a therapeutic vulnerability for TP53-mutant gastric cancer. </p
cDC2 plasticity and acquisition of a DC3-like phenotype mediated by IL-6 and PGE2 in a patient-derived colorectal cancer organoids model
Metastatic colorectal cancer (CRC) is highly resistant to therapy and prone to recur. The tumor-induced local and systemic immunosuppression allows cancer cells to evade immunosurveillance, facilitating their proliferation and dissemination. Dendritic cells (DCs) are required for the detection, processing, and presentation of tumor antigens, and subsequently for the activation of antigen-specific T cells to orchestrate an effective antitumor response. Notably, successful tumors have evolved mechanisms to disrupt and impair DC functions, underlining the key role of tumor-induced DC dysfunction in promoting tumor growth, metastasis initiation, and treatment resistance. Conventional DC type 2 (cDC2) are highly prevalent in tumors and have been shown to present high phenotypic and functional plasticity in response to tumor-released environmental cues. This plasticity reverberates on both the development of antitumor responses and on the efficacy of immunotherapies in cancer patients. Uncovering the processes, mechanisms, and mediators by which CRC shapes and disrupts cDC2 functions is crucial to restoring their full antitumor potential. In this study, we use our recently developed 3D DC-tumor co-culture system to investigate how patient-derived primary and metastatic CRC organoids modulate cDC2 phenotype and function. We first demonstrate that our collagen-based system displays extensive interaction between cDC2 and tumor organoids. Interestingly, we show that tumor-corrupted cDC2 shift toward a CD14+ population with defective expression of maturation markers, an intermediate phenotype positioned between cDC2 and monocytes, and impaired T-cell activating abilities. This phenotype aligns with the newly defined DC3 (CD14(+) CD1c(+) CD163(+)) subset. Remarkably, a comparable population was found to be present in tumor lesions and enriched in the peripheral blood of metastatic CRC patients. Moreover, using EP2 and EP4 receptor antagonists and an anti-IL-6 neutralizing antibody, we determined that the observed phenotype shift is partially mediated by PGE2 and IL-6. Importantly, our system holds promise as a platform for testing therapies aimed at preventing or mitigating tumor-induced DC dysfunction. Overall, our study offers novel and relevant insights into cDC2 (dys)function in CRC that hold relevance for the design of therapeutic approaches
High-dose short-term osimertinib treatment is effective in patient-derived metastatic colorectal cancer organoids
Background:Most tyrosine kinase inhibitors (TKIs) have failed in clinical trials for metastatic colorectal cancer (mCRC). To leverage the additional lower-affinity targets that most TKIs have, high-dose regimens that trigger efficacy are explored. Here, we studied unprecedented drug exposure–response relationships in vitro using mCRC patient-derived tumour organoids (PDTOs).Methods:We investigated the cytotoxic anti-tumour effect of high-dose, short-term (HDST) TKI treatment on 5 PDTOs. Sunitinib, cediranib and osimertinib were selected based on favourable physicochemical and pharmacokinetic properties. Intra-tumoroid TKI concentrations were measured using a clinically validated LC/MS-MS method. Cell death was determined using an enzyme activity assay, immunofluorescent staining and western blotting.Results:Most PDTOs tested were sensitive to sunitinib and cediranib, but all to osimertinib. Furthermore, HDST osimertinib treatment effectively blocks organoid growth. This treatment led to markedly elevated intra-tumoroid TKI concentrations, which correlated with PDTO sensitivity. Mechanistically, HDST osimertinib treatment induced apoptosis in treated PDTOs.Conclusion:Our work provides a better understanding of TKI exposure vs response and can be used to determine patient-specific sensitivity. Additionally, these results may guide both mechanistic elucidation in organotypic translational models and the translation of target drug exposure to clinical dosing strategies. Moreover, HDST osimertinib treatment warrants clinical exploration for mCRC
High-dose short-term osimertinib treatment is effective in patient-derived metastatic colorectal cancer organoids
Background:Most tyrosine kinase inhibitors (TKIs) have failed in clinical trials for metastatic colorectal cancer (mCRC). To leverage the additional lower-affinity targets that most TKIs have, high-dose regimens that trigger efficacy are explored. Here, we studied unprecedented drug exposure–response relationships in vitro using mCRC patient-derived tumour organoids (PDTOs).Methods:We investigated the cytotoxic anti-tumour effect of high-dose, short-term (HDST) TKI treatment on 5 PDTOs. Sunitinib, cediranib and osimertinib were selected based on favourable physicochemical and pharmacokinetic properties. Intra-tumoroid TKI concentrations were measured using a clinically validated LC/MS-MS method. Cell death was determined using an enzyme activity assay, immunofluorescent staining and western blotting.Results:Most PDTOs tested were sensitive to sunitinib and cediranib, but all to osimertinib. Furthermore, HDST osimertinib treatment effectively blocks organoid growth. This treatment led to markedly elevated intra-tumoroid TKI concentrations, which correlated with PDTO sensitivity. Mechanistically, HDST osimertinib treatment induced apoptosis in treated PDTOs.Conclusion:Our work provides a better understanding of TKI exposure vs response and can be used to determine patient-specific sensitivity. Additionally, these results may guide both mechanistic elucidation in organotypic translational models and the translation of target drug exposure to clinical dosing strategies. Moreover, HDST osimertinib treatment warrants clinical exploration for mCRC
IL-10 dampens antitumor immunity and promotes liver metastasis via PD-L1 induction
Background & Aims: The liver is one of the organs most commonly affected by metastasis. The presence of liver metastases has been reported to be responsible for an immunosuppressive microenvironment and diminished immunotherapy efficacy. Herein, we aimed to investigate the role of IL-10 in liver metastasis and to determine how its modulation could affect the efficacy of immunotherapy in vivo. Methods: To induce spontaneous or forced liver metastasis in mice, murine cancer cells (MC38) or colon tumor organoids were injected into the cecum or the spleen, respectively. Mice with complete and cell type-specific deletion of IL-10 and IL-10 receptor alpha were used to identify the source and the target of IL-10 during metastasis formation. Programmed death ligand 1 (PD-L1)-deficient mice were used to test the role of this checkpoint. Flow cytometry was applied to characterize the regulation of PD-L1 by IL-10. Results: We found that Il10-deficient mice and mice treated with IL-10 receptor alpha antibodies were protected against liver metastasis formation. Furthermore, by using IL-10 reporter mice, we demonstrated that Foxp3+ regulatory T cells (Tregs) were the major cellular source of IL-10 in liver metastatic sites. Accordingly, deletion of IL-10 in Tregs, but not in myeloid cells, led to reduced liver metastasis. Mechanistically, IL-10 acted on Tregs in an autocrine manner, thereby further amplifying IL-10 production. Furthermore, IL-10 acted on myeloid cells, i.e. monocytes, and induced the upregulation of the immune checkpoint protein PD-L1. Finally, the PD-L1/PD-1 axis attenuated CD8-dependent cytotoxicity against metastatic lesions. Conclusions: Treg-derived IL-10 upregulates PD-L1 expression in monocytes, which in turn reduces CD8+ T-cell infiltration and related antitumor immunity in the context of colorectal cancer-derived liver metastases. These findings provide the basis for future monitoring and targeting of IL-10 in colorectal cancer-derived liver metastases. Impact and implications: Liver metastasis diminishes the effectiveness of immunotherapy and increases the mortality rate in patients with colorectal cancer. We investigated the role of IL-10 in liver metastasis formation and assessed its impact on the effectiveness of immunotherapy. Our data show that IL-10 is a pro-metastatic factor involved in liver metastasis formation and that it acts as a regulator of PD-L1. This provides the basis for future monitoring and targeting of IL-10 in colorectal cancer-derived liver metastasis.</p
IL-10 dampens antitumor immunity and promotes liver metastasis via PD-L1 induction
Background & Aims: The liver is one of the organs most commonly affected by metastasis. The presence of liver metastases has been reported to be responsible for an immunosuppressive microenvironment and diminished immunotherapy efficacy. Herein, we aimed to investigate the role of IL-10 in liver metastasis and to determine how its modulation could affect the efficacy of immunotherapy in vivo. Methods: To induce spontaneous or forced liver metastasis in mice, murine cancer cells (MC38) or colon tumor organoids were injected into the cecum or the spleen, respectively. Mice with complete and cell type-specific deletion of IL-10 and IL-10 receptor alpha were used to identify the source and the target of IL-10 during metastasis formation. Programmed death ligand 1 (PD-L1)-deficient mice were used to test the role of this checkpoint. Flow cytometry was applied to characterize the regulation of PD-L1 by IL-10. Results: We found that Il10-deficient mice and mice treated with IL-10 receptor alpha antibodies were protected against liver metastasis formation. Furthermore, by using IL-10 reporter mice, we demonstrated that Foxp3+ regulatory T cells (Tregs) were the major cellular source of IL-10 in liver metastatic sites. Accordingly, deletion of IL-10 in Tregs, but not in myeloid cells, led to reduced liver metastasis. Mechanistically, IL-10 acted on Tregs in an autocrine manner, thereby further amplifying IL-10 production. Furthermore, IL-10 acted on myeloid cells, i.e. monocytes, and induced the upregulation of the immune checkpoint protein PD-L1. Finally, the PD-L1/PD-1 axis attenuated CD8-dependent cytotoxicity against metastatic lesions. Conclusions: Treg-derived IL-10 upregulates PD-L1 expression in monocytes, which in turn reduces CD8+ T-cell infiltration and related antitumor immunity in the context of colorectal cancer-derived liver metastases. These findings provide the basis for future monitoring and targeting of IL-10 in colorectal cancer-derived liver metastases. Impact and implications: Liver metastasis diminishes the effectiveness of immunotherapy and increases the mortality rate in patients with colorectal cancer. We investigated the role of IL-10 in liver metastasis formation and assessed its impact on the effectiveness of immunotherapy. Our data show that IL-10 is a pro-metastatic factor involved in liver metastasis formation and that it acts as a regulator of PD-L1. This provides the basis for future monitoring and targeting of IL-10 in colorectal cancer-derived liver metastasis.</p
Targeting the Microenvironment in Advanced Colorectal Cancer
Colorectal cancer (CRC) diagnosis often occurs at late stages when tumor cells have already disseminated. Current therapies are poorly effective for metastatic disease, the main cause of death in CRC. Despite mounting evidence implicating the tumor microenvironment in CRC progression and metastasis, clinical practice remains predominantly focused on targeting the epithelial compartment. Because CRCs remain largely refractory to current therapies, we must devise alternative strategies. Transforming growth factor (TGF)-β has emerged as a key architect of the microenvironment in poor-prognosis cancers. Disseminated tumor cells show a strong dependency on a TGF-β-activated stroma during the establishment and subsequent expansion of metastasis. We review and discuss the development of integrated approaches focused on targeting the ecosystem of poor-prognosis CRCs