81 research outputs found

    CMB Observations: improvements of the performance of correlation radiometers by signal modulation and synchronous detection

    Get PDF
    Observation of the fine structures (anisotropies, polarization, spectral distortions) of the Cosmic Microwave Background (CMB) is hampered by instabilities, 1/f noise and asymmetries of the radiometers used to carry on the measurements. Addition of modulation and synchronous detection allows to increase the overall stability and the noise rejection of the radiometers used for CMB studies. In this paper we discuss the advantages this technique has when we try to detect CMB polarization. The behaviour of a two channel correlation receiver to which phase modulation and synchronous detection have been added is examined. Practical formulae for evaluating the improvements are presented.Comment: 18 pages, 3 figures, New Astronomy accepte

    Pericardial rather than epicardial fat is a cardiometabolic risk marker: an MRI vs echo study

    Get PDF
    Several studies using echocardiography identified epicardial adipose tissue (EPI) as an important cardiometabolic risk marker. However, validation compared with magnetic resonance imaging (MRI) or computed tomography has not been performed. Moreover, pericardial adipose tissue (PERI) has recently been shown to have some correlation with cardiovascular disease risk factors. The aims of this study were to validate echocardiographic analyses compared with MRI and to evaluate which cardiac fat depot (EPI or PERI) is the most appropriate cardiovascular risk marker. METHODS: Forty-nine healthy subjects were studied (age range, 25-68 years; body mass index, 21-40 kg/m(2)), and PERI and EPI fat depots were measured using echocardiography and MRI. Findings were correlated with MRI visceral fat and subcutaneous fat, blood pressure, insulin sensitivity, triglycerides, cholesterol, insulin, glucose, and 10-year coronary heart disease risk. RESULTS: Most cardiac fat was constituted by PERI (about 77%). PERI thickness by echocardiography was well correlated with MRI area (r = 0.36, P = .009), and independently of the technique used for quantification, PERI was correlated with body mass index, waist circumference, visceral fat, subcutaneous fat, blood pressure, insulin sensitivity, triglycerides, cholesterol, glucose, and coronary heart disease risk. On the contrary, EPI thicknesses correlated only with age did not correlate significantly with MRI EPI areas, which were found to correlate with age, body mass index, subcutaneous fat, and hip and waist circumferences. CONCLUSIONS: Increased cardiac fat in the pericardial area is strongly associated with features of the metabolic syndrome, whereas no correlation was found with EPI, indicating that in clinical practice, PERI is a better cardiometabolic risk marker than EPI

    Early Hypertension Is Associated With Reduced Regional Cardiac Function, Insulin Resistance, Epicardial, and Visceral Fat

    Get PDF
    Mild-to-moderate hypertension is often associated with insulin resistance and visceral adiposity. Whether these metabolic abnormalities have an independent impact on regional cardiac function is not known. The goal of this study was to investigate the effects of increased blood pressure, insulin resistance, and ectopic fat accumulation on the changes in peak systolic circumferential strain. Thirty-five male subjects (age: 47±1 years; body mass index: 28.4±0.6 kg . m −2 ; mean±SEM) included 13 with normal blood pressure (BP: 113±5/67±2 mm Hg), 13 with prehypertension (BP: 130±1/76±2 mm Hg), and 9 newly diagnosed with essential hypertension (BP: 150±2/94±2 mm Hg) who underwent cardiac magnetic resonance tissue tagging (MRI) and MRI quantitation of abdominal visceral and epicardial fat. Glucose tolerance, on oral glucose tolerance test, and insulin resistance were assessed along with the serum lipid profile. All of the subjects had normal glucose tolerance, left- and right-ventricular volumes, and ejection fraction. Across the BP groups, left ventricular mass tended to increase, and circumferential shortening was progressively reduced at basal, midheart, and apical segments (on average, from −17.0±0.5% in normal blood pressure to −15.2±0.7% in prehypertension to −13.6±0.8% in those newly diagnosed with essential hypertension; P =0.004). Reduced circumferential strain was significantly associated with raised BP independent of age ( r =0.41; P =0.01) and with epicardial and visceral fat, serum triglycerides, and insulin resistance independent of age and BP. In conclusion, regional left ventricular function is already reduced at the early stages of hypertension despite the normal global cardiac function. Insulin resistance, dyslipidemia, and ectopic fat accumulation are associated with reduced regional systolic function

    Modelling diffractive effects in silicon pore optics for the ATHENA X-ray telescope

    Get PDF
    Silicon Pore Optics (SPO) are the technology selected for the assembly of the mirror module of the ATHENA X-ray telescope. An SPO mirror module consists of a quadruple stack of etched and wedged silicon wafers, in order to create a stiff and lightweight structure, able to reproduce in each pore the Wolter-I geometry required to image X-rays on the telescope focal plane. Due to the small pore size (a few mm2), aperture diffraction effects in X-rays are small, but not totally negligible to the angular resolutions at play. In contrast, diffraction effects are the dominant term in the UV light illumination that will be used to co-align the 600 mirror modules of ATHENA to a common focus. For this reason, diffractive effects need to be properly modeled, and this constitutes a specific task of the ESA-led SImPOSIUM (SIlicon Pore Optic SImUlation and Modelling) project, involving INAF-Brera and DTU. In this context, a specific software tool (SWORDS: SoftWare fOR Diffraction of Silicon pore optics) has been developed to the end of simulating diffraction effects in SPO mirror modules. This approach also allows the user to effectively predict the effects of various imperfections (figure errors, misalignments) in a self-consistent way, in different experimental configurations (X-ray source off-axis or at finite distance), as a fast and reliable alternative to ray-tracing, also at X-ray wavelengths

    Test plan of the BEaTriX paraboloidal mirror at PANTER

    Get PDF
    Scope of this technical note is the definition of a test plan for the X-ray characterization campaign of the BEaTriX paraboloidal mirror at PANTER. The collimating mirror is a core component of the 4.51 keV beamline of the BEaTriX expanded X-ray beam facility; indeed, the optical quality of the mirror will directly affect the collimation and the uniformity of the final beam that will be used to characterize the focusing performance of SPO MM for ATHENA. The mirror is made of HOQ 310 fused quartz, procured from Zeiss in a preliminary grinding and lapping state, and subsequently finished by a sequence of polishing at the Zeeko robotic machine installed at INAF-OAB. Improvement of the mirror figure has been achieved across several runs of IBF process, using the dedicated facility at INAF-OAB. At each polishing/figuring step, the mirror profile and surface roughness have been characterized using suitable metrology tools at MediaLario

    Optical simulations for the Wolter-I collimator in the VERT-X calibration facility

    Get PDF
    The VERT-X X-ray calibration facility, currently in prototypal realization phase supported by ESA, will be a vertical X-ray beamline able to test and calibrate the entire optical assembly of the ATHENA X-ray telescope. Owing to its long focal length (12 m), a full-illumination test of the entire focusing system would require a parallel and uniform X-ray beam as large as the optical assembly itself (2.5 m). Moreover, the module should better be laid parallel to the ground in order to minimize the effects of gravity deformations. Therefore, the ideal calibration facility would consist of a vertical beam, with the source placed at very large distance (>> 500 m) under high vacuum (10-6 mbar). Since such calibration systems do not exist, and also appear to be very hard to manufacture, VERT-X will be based on a different concept, i.e., the raster scan of a tightly (≈ 1 arcsec) collimated X-ray beam, generated by a microfocus source and made parallel via a precisely shaped Wolter-I mirror. In this design, the mirror will be made of two segments (paraboloid + hyperboloid) that, for the X-ray beam collimation to be preserved, will have to be accurately finished and maintain their mutual alignment to high accuracy during the scan. In this paper, we show simulations of the reflected wavefront based on physical optics and the expected final imaging quality, for different polishing levels and misalignments for the two segments of the VERT-X collimator

    A fully-analytical treatment of stray light in silicon pore optics for the ATHENA X-ray telescope

    Get PDF
    Just like in any other X-ray telescope, stray light is expected to be a potential issue for the ATHENA X-ray telescope, with a significant impact on the scientific goals. The most prominent cause of stray light in Wolter-I type optics is represented by rays that did not undergo double reflection and were reflected only singly, on either the parabolic or the hyperbolic segment. A minor contribution may, additionally, arise from the diffuse reflections on the backside of the pore membrane and ribs. Aiming at determining whether the resulting background is tolerable or not, the effective area for stray light has to be calculated. While ray-tracing is a standard and well-assessed tool to perform this task, it usually takes a considerable amount of computation time to trace a number of rays sufficient to reach an appropriate statistical significance, because only a minority of stray rays emerge unobstructed from the mirror assembly. In contrast, approaching the stray light from the analytical viewpoint takes several upsides: it is faster than ray-tracing, does not suffer from any statistical uncertainties, and allows one to better understand the role of the parameters at play. The only approximation involved is the double cone geometry, which however is largely applicable to ATHENA as far as the sole effective area is concerned. In this paper, we show how the analytical approach can be successfully adopted to model the stray light effective area in the ATHENA mirror assembly, as a function of the X-ray energy and of the source off-axis angle
    • 

    corecore