912 research outputs found

    Effect of Cold Rolling on Microstructural and Mechanical Properties of a Dual-Phase Steel for Automotive Field

    Get PDF
    A new advanced dual-phase (DP) steel characterized by ferrite and bainite presence in equal fractions has been studied within this paper. The anisotropy change of this steel was assessed as a progressively more severe cold rolling process was introduced. Specifically, tensile tests were used to build a strain-hardening curve, which describes the evolution of this DP steel's mechanical properties as the thinning level increases from 20 to 70% with 10% step increments. As expected, the cold rolling process increases mechanical properties, profoundly altering the material's microstructure, which was assessed in depth using Electron Backscatter Diffraction (EBSD) analysis coupled with the Kernel Average Misorientation (KAM) maps. At the same time, the process strongly modifies the material planar anisotropy. Microstructural and mechanical assessment and the Kocks-Mecking model applied to this steel evidenced that a 50% strain hardening makes the DP steel isotropic. The material retains or resumes anisotropic behavior for a lower or higher degree of deformation. Furthermore, the paper evaluated the forming limit of this DP steel and introduced geometric limitations to testing the thin steel plates' mechanical properties

    Hardness Evolution of Solution-Annealed LPBFed Inconel 625 Alloy under Prolonged Thermal Exposure

    Get PDF
    Thanks to its high weldability, Inconel 625 (IN625) can be easily processed by laser powder bed fusion (LPBF). After production, this alloy is typically subjected to specific heat treatments to design specific microstructure features and mechanical performance suitable for various industrial applications, including aeronautical, aerospace, petrochemical, and nuclear fields. When employed in structural applications, IN625 can be used up to around 650 °C. This limitation is mainly caused by the transformation of metastable γ″ phases into stable δ phases occurring under prolonged thermal exposure, which results in drastically reduced ductility and toughness of the alloy. Because the microstructure and mechanical properties change during thermal exposure, it is essential to study the material simulating possible service temperatures. In the current study, LPBFed IN625 samples were solution-annealed and then subjected to thermal exposure at 650 °C for different times up to 2000 h. The characterization focused on the evolution of the main phases, γ″ and δ phases, and their influence on the hardness evolution. The microstructure and hardness of the heat-treated LPBFed IN625 samples were compared with data related to the traditionally processed IN625 alloy (e.g., wrought state) reported in the literature

    Study of the Microstructure and Cracking Mechanisms of Hastelloy X Produced by Laser Powder Bed Fusion

    Get PDF
    Hastelloy X (HX) is a Ni-based superalloy which suffers from high crack susceptibility during the laser powder bed fusion (LPBF) process. In this work, the microstructure of as-built HX samples was rigorously investigated to understand the main mechanisms leading to crack formation. The microstructural features of as-built HX samples consisted of very fine dendrite architectures with dimensions typically less than 1 Āµm, coupled with the formation of sub-micrometric carbides, the largest ones were mainly distributed along the interdendritic regions and grain boundaries. From the microstructural analyses, it appeared that the formation of intergranular carbides provided weaker zones, which combined with high thermal residual stresses resulted in hot cracks formation along the grain boundaries. The carbides were extracted from the austenitic matrix and characterized by combining different techniques, showing the formation of various types of Mo-rich carbides, classified as M6C, M12C and MnCm type. The first two types of carbides are typically found in HX alloy, whereas the last one is a metastable carbide probably generated by the very high cooling rates of the process

    An Overview of the Sustainable Recycling Processes Used for Lithium-Ion Batteries

    Get PDF
    first_pagesettingsOrder Article Reprints Open AccessReview An Overview of the Sustainable Recycling Processes Used for Lithium-Ion Batteries by Daniele Marchese 1,*ORCID,Chiara GiosuĆØ 2,*ORCID,Antunes Staffolani 3,4,5ORCID,Massimo Conti 6,Simone Orcioni 6,Francesca Soavi 3,4,5ORCID,Matteo Cavalletti 1 andPierluigi Stipa 2ORCID 1 MIDAC S.p.A., Via Alessandro Volta 2, Soave, 37038 Verona, Italy 2 Department of Science and Engineering of Matter, Environment and Urban Planning (SIMAU), Polytechnic University of Marche, INSTM Research Unit, 60131 Ancona, Italy 3 Department of Chemistry ā€œGiacomo Ciamicianā€, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy 4 ENERCube, Centro Ricerche Energia, Ambiente e Mare, Centro Interdipartimentale per la Ricerca Industriale Fonti Rinnovabili, Ambiente, Mare ed Energia (CIRI-FRAME)ā€”Alma Mater Studiorum University of Bologna, Viale Ciro Menotti, 48, 48122 Marina di Ravenna, Italy 5 National Reference Center for Electrochemical Energy Storage (GISEL)ā€”INSTM, Via G. Giusti 9, 50121 Firenze, Italy 6 Department of Information Engineering (DII), Polytechnic University of Marche, INSTM Research Unit, 60131 Ancona, Italy * Authors to whom correspondence should be addressed. Batteries 2024, 10(1), 27; https://doi.org/10.3390/batteries10010027 Submission received: 25 November 2023 / Revised: 21 December 2023 / Accepted: 6 January 2024 / Published: 11 January 2024 (This article belongs to the Special Issue Toward Next-Generation Rechargeable Lithium-Ion Batteries: Current Status and Future Prospects) Downloadkeyboard_arrow_down Browse Figures Versions Notes Abstract Lithium-ion batteries (LIBs) can play a crucial role in the decarbonization process that is being tackled worldwide; millions of electric vehicles are already provided with or are directly powered by LIBs, and a large number of them will flood the markets within the next 8ā€“10 years. Proper disposal strategies are required, and sustainable and environmental impacts need to be considered. Despite still finding little applicability in the industrial field, recycling could become one of the most sustainable options to handle the end of life of LIBs. This review reports on the most recent advances in sustainable processing for spent LIB recycling that is needed to improve the LIB value chain, with a special focus on green leaching technologies for Co-based cathodes. Specifically, we provide the main state of the art for sustainable LIB recycling processes, focusing on the pretreatment of spent LIBs; we report on Life Cycle Assessment (LCA) studies on the usage of acids, including mineral as well as organic ones; and summarize the recent innovation for the green recovery of valuable metals from spent LIBs, including electrochemical methods. The advantage of using green leaching agents, such as organic acids, which represent a valuable option towards more sustainable recycling processes, is also discussed. Organic acids can, indeed, reduce the economic, chemical, and environmental impacts of LIBs since post-treatments are avoided. Furthermore, existing challenges are identified herein, and suggestions for improving the effectiveness of recycling are defined

    Characterization of an Additive Manufactured TiAl Alloy-Steel Joint Produced by Electron Beam Welding

    Get PDF
    In this work, the characterization of the assembly of a steel shaft into a Ī³-TiAl part for turbocharger application, obtained using Electron Beam Welding (EBW) technology with a Ni-based filler, was carried out. The Ti-48Al-2Nb-0.7Cr-0.3Si (at %) alloy part was produced by Electron Beam Melting (EBM). This additive manufacturing technology allows the production of a lightweight part with complex shapes. The replacement of Nickel-based superalloys with TiAl alloys in turbocharger automotive applications will lead to an improvement of the engine performance and a substantial reduction in fuel consumption and emission. The welding process allows a promising joint to be obtained, not affecting the TiAl microstructure. Nevertheless, it causes the formation of diffusive layers between the Ni-based filler and both steel and TiAl, with the latter side being characterized by a very complex microstructure, which was fully characterized in this paper by means of Scanning Electron Microscopy, Energy Dispersive X-ray Spectroscopy, and nanoindentation. The diffusive interface has a thickness of about 6 Āµm, and it is composed of several layers. Specifically, from the TiAl alloy side, we find a layer of Tiā‚ƒAl followed by Alā‚ƒNiTiā‚‚ and AlNiā‚‚Ti. Subsequently Ni becomes more predominant, with a first layer characterized by abundant carbide/boride precipitation, and a second layer characterized by Si-enrichment. Then, the chemical composition of the Ni-based filler is gradually reached

    Rectifiability and upper Minkowski bounds for singularities of harmonic QQ-valued maps

    Full text link
    In this article we prove that the singular set of Dirichlet-minimizing QQ-valued functions is countably (māˆ’2)(māˆ’2)-rectifiable and we give upper bounds for the (mā€“2)(mā€“2)-dimensional Minkowski content of the set of singular points with multiplicity QQ

    Effect of Aging and Cooling Path on the Super Ī²-Transus Heat-Treated Ti-6Al-4V Alloy Produced via Electron Beam Melting (EBM)

    Get PDF
    This work focuses on the effect of different heat treatments on the Ti-6Al-4V alloy processed by means of electron beam melting (EBM). Super beta-transus annealing was conducted at 1050 degrees C for 1 h on Ti-6Al-4V samples, considering two different cooling paths (furnace cooling and water quenching). This heat treatment induces microstructural recrystallization, thus reducing the anisotropy generated by the EBM process (columnar prior-beta grains). Subsequently, the annealed furnace-cooled and water-quenched samples were aged at 540 degrees C for 4 h. The results showed the influence of the aging treatment on the microstructure and the mechanical properties of the annealed EBM-produced Ti-6Al-4V. A comparison with the traditional processed heat-treated material was also conducted. In the furnace-cooled specimens consisting of lamellar alpha+beta, the aging treatment improved ductility and strength by inducing microstructural thickening of the alpha laths and reducing the beta fraction. The effect of the aging treatment was also more marked in the water-quenched samples, characterized by high tensile strengths but limited ductility due to the presence of martensite. In fact, the aging treatment was effective in the recovery of the ductility loss, maintaining high tensile strength properties due to the variation in the relative number of alpha/alpha' interfaces resulting from alpha' decomposition. This study, therefore, offers an in-depth investigation of the potential beneficial effects of the aging treatment on the microstructure and mechanical properties of the EBM-processed super beta-transus heat-treated Ti-6Al-4V alloy under different cooling conditions
    • ā€¦
    corecore