49 research outputs found

    Rise and Fall of an Anti-MUC1 Specific Antibody

    Get PDF
    So far, human antibodies with good affinity and specificity for MUC1, a transmembrane protein overexpressed on breast cancers and ovarian carcinomas, and thus a promising target for therapy, were very difficult to generate.A human scFv antibody was isolated from an immune library derived from breast cancer patients immunised with MUC1. The anti-MUC1 scFv reacted with tumour cells in more than 80% of 228 tissue sections of mamma carcinoma samples, while showing very low reactivity with a large panel of non-tumour tissues. By mutagenesis and phage display, affinity of scFvs was increased up to 500fold to 5,7×10(-10) M. Half-life in serum was improved from below 1 day to more than 4 weeks and was correlated with the dimerisation tendency of the individual scFvs. The scFv bound to T47D and MCF-7 mammalian cancer cell lines were recloned into the scFv-Fc and IgG format resulting in decrease of affinity of one binder. The IgG variants with the highest affinity were tested in mouse xenograft models using MCF-7 and OVCAR tumour cells. However, the experiments showed no significant decrease in tumour growth or increase in the survival rates. To study the reasons for the failure of the xenograft experiments, ADCC was analysed in vitro using MCF-7 and OVCAR3 target cells, revealing a low ADCC, possibly due to internalisation, as detected for MCF-7 cells.Antibody phage display starting with immune libraries and followed by affinity maturation is a powerful strategy to generate high affinity human antibodies to difficult targets, in this case shown by the creation of a highly specific antibody with subnanomolar affinity to a very small epitope consisting of four amino acids. Despite these "best in class" binding parameters, the therapeutic success of this antibody was prevented by the target biology

    Glutamate receptor antagonism: neurotoxicity, anti-akinetic effects, and psychosis

    Get PDF
    There is evidence to suggest that glutamate and other excitatory amino acids play an important role in the regulation of neuronal excitation. Glutamate receptor stimulation leads to a non-physiological increase of intracellular free Ca2+. Disturbed Ca2+ homeostasis and subsequent radical formation may be decisive factors in the pathogenesis of neurodegenerative diseases. Decreased glutamatergic activity appears to contribute to paranoid hallucinatory psychosis in schizophrenia and pharmacotoxic psychosis in Parkinson's disease. It has been suggested that a loss of glutamatergic function causes dopaminergic over-activity. Imbalances of glutamatergic and dopaminergic systems in different brain regions may result in anti-akinetic effects or the occurrence of psychosis. The simplified hypothesis of a glutamatergic-dopaminergic (im)-balance may lead to a better understanding of motor behaviour and psychosis

    Binding patterns of DTR-specific antibodies reveal a glycosylation-conditioned tumor-specific epitope of the epithelial mucin (MUC1)

    No full text
    Glycosylation determines essential biological functions of epithelial mucins in health and disease. We report on the influence of glycosylation of the immunodominant DTR motif of MUC1 on its antigenicity. Sets of novel glycopeptides were synthesized that enabled us to examine sole and combined effects of peptide length (number of repeats) and O-glycosylation with GalNAc at the DTR motif on the binding patterns of 22 monoclonal antibodies recognizing this motif. In case of unglycosylated peptides almost all antibodies bound better to multiple MUC1 tandem repeats. Glycosylation at the DTR led to enhanced binding in 11 cases, whereas 10 antibodies were not influenced in binding, and one was inhibited. In nine of the former cases both length and DTR glycosylation were additive in their influence on antibody binding, suggesting that both effects are different. Improved binding to the glycosylated DTR motif was exclusively found with antibodies generated against tumor-derived MUC1. Based on these data a tumor-specific MUC1 epitope is defined comprising the ...PDTRP... sequence in a particular conformation essentially determined by O-glycosylation at its threonine with either GalNAcα1 or a related short glycan. The results can find application in the field of MUC1-based immunotherapy

    The Thomsen-Friedenreich disaccharide as antigen for in vivo tumor targeting with multivalent scFvs

    No full text
    The Thomsen-Friedenreich disaccharide (TF{alpha}) is a promising antigen for tumor immunotargeting, since it is almost exclusively expressed on carcinoma tissues. So far, an obstacle preventing the exploitation of TF for immunotargeting has been the lack of suitable (non-IgM) antibodies with high affinity and specificity. Recently we reported on a novel strategy for generating antibodies toward small uncharged carbohydrates and the generation of recombinant antibodies toward TF. Among them, two multivalent scFv antibodies showed sub-micromolar functional affinities and appeared well suited for immunotargeting. In the present study, the trimeric scFv(1aa) and the tetrameric scFv(0aa) have been further developed for radioimmunotargeting. The scFvs were radiolabeled with (111)In using DTPA as chelator without losing binding activity or molecular stoichiometry. Binding affinities as high as 1 x 10(-7) M toward TF displayed on living cells were determined. Antibody biodistribution and tumor targeting efficacy were studied in TF-positive human breast cancer (ZR-75-1) bearing mice. TF was successfully targeted in vivo with tumor uptakes of approximately 11 and 8% ID/g after 24 h for the trimeric and tetrameric scFv, respectively. These results validate TF as a potent antigen for tumor targeting. The biodistribution of the scFvs was comparable to that reported for IgGs. In contrast to the IgGs, the serum clearance of the scFvs was very fast, which could be an advantage in a therapeutic setting. Furthermore, kidney uptake, which is often critical for small recombinant antibodies labeled with radio-metals, was low with the tetramer (11% ID/g). We conclude that the multimeric anti-TF scFvs are promising candidates to be further developed toward therapeutic application

    PankoMab: a potent new generation anti-tumour MUC1 antibody

    No full text
    Recently, we described a new carbohydrate-induced conformational tumour-epitope on mucin-1 (MUC1) with the potential for improvement of immunotherapies [29, 30]. PankoMab is a novel antibody, which binds specifically to this epitope and was designed to show the highest glycosylation dependency and the strongest additive binding effect when compared to other MUC1 antibodies. This enables PankoMab to differentiate between tumour MUC1 and non-tumour MUC1 epitopes. It has a high-affinity towards tumour cells (e.g. KD [M] of 0.9 and 3x10(-9 )towards NM-D4 and ZR75-1, respectively) and detects a very large number of binding sites (e.g. 1.0 and 2.4x10(6 )for NM-D4 and ZR75-1, respectively). PankoMab is rapidly internalised, and after toxin coupling is able to induce very effectively toxin-mediated antigen-specific tumour cell killing. PankoMab reveals a potent tumour-specific antibody-dependent cell cytotoxicity (ADCC). PankoMab is, therefore, distinguished by a combination of advantages compared to other MUC1 antibodies in clinical development, including higher tumour specificity, higher affinity, a higher number of binding sites, largely reduced binding to shed MUC1 from colon and pancreatic carcinoma patients, no binding to mononucleated cells from peripheral blood (except approximately 7% of activated T cells), stronger ADCC activity and rapid internalisation as required for toxin-mediated cell killing. This renders it a superior antibody for in vivo diagnostics and various immunotherapeutic approaches

    Thomsen-Friedenreich antigen: the "hidden" tumor antigen

    No full text

    Ideomotor apraxia in the course of DAT

    No full text

    Neuropathological validation of the Hachinski Scale

    No full text

    Multivalent scFv display of phagemid repertoires for the selection of carbohydrate-specific antibodies and its application to the Thomsen-Friedenreich antigen

    No full text
    The Thomsen-Friedenreich disaccharide (TF) is a promising target antigen for tumor immunotherapy, since it is almost exclusively expressed in carcinoma tissues. The TF-specific antibodies generated so far are IgMs of mouse origin with limited therapeutic potential. Phage-displayed scFv repertoires are an established source for recombinant antibodies; however, we were unable to identify scFvs binding to TF when applying libraries in the standard monovalent display format of phagemid systems. Here, we report on the successful selection of TF-specific antibody fragments using a multivalent scFv phagemid library format based on shortened linkers (one amino acid residue). The libraries were constructed from mice immunized with asialoglycophorin and selected using TF displayed on two different carrier molecules in combination with the proteolytically cleavable helper phage KM13. All isolated clones encoded the same framework genes and the same complementarity-determining regions. After affinity maturation only scFv with the founder sequence were selected from secondary repertoires. This indicates a very narrow sequence window for TF-specific antibodies. Investigating other linker-length formats revealed a clear inverse correlation between linker length and binding activity both as soluble proteins and displayed on phages. The highest affinity was obtained with the tetrameric format. The selected scFv was specific for TF on various carrier molecules and tumor cells and performed well in ELISA and immunohistochemistry. We postulate that scFv phagemid library formats with short linkers (i.e. multimeric scFvs) may, in general, be advantageous in selections for the generation of scFvs against carbohydrate epitopes or other epitopes associated with low intrinsic affinity per binding site), and expect that they will be superior in applications for diagnosis or therapy

    Cluster binding studies with two anti-Thomsen-Friedenreich (anti-core-1, CD176, TF) antibodies: evidence for a multiple TF epitope

    No full text
    Antibodies to carbohydrate epitopes are often of the IgM isotype and require multiple binding for sufficient avidity. Therefore clusters of epitopes are preferred antigenic sites in these cases. We have examined the type of clusters recognized by two anti-Thomsen-Friedenreich (TF, core-1, CD176) IgM antibodies, NM-TF1 and NM-TF2, using several different sets of TF-carrying synthetic glycoconjugates in ELISA experiments. To our surprise, the single most important factor determining binding strength was a close vicinity of several TF glycans at distances of ≤1 nm. Considering the known dimensions of IgM antibodies, our data strongly suggest that a cluster of up to four TF moieties, presenting as a "multiple epitope", is required to attach to a single combining site in order to result in adequate binding strength. This effect can also be achieved by "surrogate-multiple epitopes" consisting of separate TF-carrying molecules in close vicinity. In addition, it was found that serine-linked TFs are stronger bound than threonine-linked TFs by both antibodies. This peculiar type of cluster recognition may contribute to improved avidity and explicit tumor specificity
    corecore