13 research outputs found
Non-Markov Policies to Reduce Sequential Failures in Robot Bin Picking
A new generation of automated bin picking systems using deep learning is
evolving to support increasing demand for e-commerce. To accommodate a wide
variety of products, many automated systems include multiple gripper types
and/or tool changers. However, for some objects, sequential grasp failures are
common: when a computed grasp fails to lift and remove the object, the bin is
often left unchanged; as the sensor input is consistent, the system retries the
same grasp over and over, resulting in a significant reduction in mean
successful picks per hour (MPPH). Based on an empirical study of sequential
failures, we characterize a class of "sequential failure objects" (SFOs) --
objects prone to sequential failures based on a novel taxonomy. We then propose
three non-Markov picking policies that incorporate memory of past failures to
modify subsequent actions. Simulation experiments on SFO models and the EGAD
dataset suggest that the non-Markov policies significantly outperform the
Markov policy in terms of the sequential failure rate and MPPH. In physical
experiments on 50 heaps of 12 SFOs the most effective Non-Markov policy
increased MPPH over the Dex-Net Markov policy by 107%.Comment: 2020 IEEE International Conference on Automation Science and
Engineering (CASE
Mechanical Search: Multi-Step Retrieval of a Target Object Occluded by Clutter
When operating in unstructured environments such as warehouses, homes, and
retail centers, robots are frequently required to interactively search for and
retrieve specific objects from cluttered bins, shelves, or tables. Mechanical
Search describes the class of tasks where the goal is to locate and extract a
known target object. In this paper, we formalize Mechanical Search and study a
version where distractor objects are heaped over the target object in a bin.
The robot uses an RGBD perception system and control policies to iteratively
select, parameterize, and perform one of 3 actions -- push, suction, grasp --
until the target object is extracted, or either a time limit is exceeded, or no
high confidence push or grasp is available. We present a study of 5 algorithmic
policies for mechanical search, with 15,000 simulated trials and 300 physical
trials for heaps ranging from 10 to 20 objects. Results suggest that success
can be achieved in this long-horizon task with algorithmic policies in over 95%
of instances and that the number of actions required scales approximately
linearly with the size of the heap. Code and supplementary material can be
found at http://ai.stanford.edu/mech-search .Comment: To appear in IEEE International Conference on Robotics and Automation
(ICRA), 2019. 9 pages with 4 figure