3 research outputs found

    Antibacterial and Photocatalytic Coatings Based on Cu-Doped ZnO Nanoparticles into Microcellulose Matrix

    No full text
    The paper presents a successful, simple method for the preparation and deposition of new hybrid Cu-doped ZnO/microcellulose coatings on textile fibers, directly from cellulose aqueous solution. The morphological, compositional, and structural properties of the obtained materials were investigated using different characterization methods, such as SEM-EDX, XRD, Raman and FTIR, as well as BET surface area measurements. The successful doping of ZnO NPs with Cu was confirmed by the EDX and Raman analysis. As a result of Cu doping, the hybrid NPs experienced a phase change from ZnO to (Zn0.9Cu0.1)O, as shown by the XRD results. All the hybrid NPs exhibited a high degree of crystallinity, as revealed by the very sharp reflections in XRD patterns and suggested also by the Raman results. The evaluation of the very low copper-doping (0.1–1 at.%) effect has shown different behavior trends of the hybrid coatings compared with the starting oxide NPs, for MB and MO photodegradation. Continuous increases up to 92% and 60% for MB and MO degradation, respectively, were obtained at maximum 1 at.%-Cu doping coatings. Strong antibacterial activity against S. aureus and E. coli were observed

    Antimicrobial Features of Organic Functionalized Graphene-Oxide with Selected Amines

    No full text
    (1) Background: Graphene oxide is a new carbon-based material that contains functional groups (carboxyl, hydroxyl, carbonyl, epoxy) and therefore can be easily functionalized with organic compounds of interest, yielding hybrid materials with important properties and applications. (2) Methods: Graphene oxide has been obtained by a modified Hummers method and activated by thionyl chloride in order to be covalently functionalized with amines. Thus obtained hybrid materials were characterized by infrared and Raman spectroscopy, elemental analysis and scanning electron microscopy and then tested for their antimicrobial and anti-biofilm activity. (3) Results: Eight amines of interest were used to functionalize grapheme oxide and the materials thus obtained were tested against Gram-negative (Escherichia coli, Pseudomonas aeruginosa) and Gram-positive (Staphylococcus aureus) bacterial strainsin plankonic and biofilm growth state. Both amines, as well as the functionalized materials, exhibited anti-microbial features. Three to five functionalized graphene oxide materials exhibited improved inhibitory activity against planktonic strains as compared with the respective amines. In exchange, the amines alone proved generally more efficient against biofilm-embedded cells. (4) Conclusions: Such hybrid materials may have a wide range of potential use in biomedical applications

    Photocatalytic and Antibacterial Properties of Doped TiO<sub>2</sub> Nanopowders Synthesized by Sol−Gel Method

    No full text
    For environmental applications, nanosized TiO2-based materials are known as the most important photocatalyst and are intensively studied for their advantages such as their higher activity, lower price, and chemical and photoresist properties. Zn or Cu doped TiO2 nanoparticles with anatase crystalline structure were synthesized by sol−gel process. Titanium (IV) butoxide was used as a TiO2 precursor, with parental alcohol as a solvent, and a hydrolysing agent (ammonia-containing water) was added to obtain a solution with pH 10. The gels were characterized by TG/DTA analysis, SEM, and XPS. Based on TG/DTA results, the temperature of 500 °C was chosen for processing the powders in air. The structure of the samples thermally treated at 500 °C was analysed by XRD and the patterns show crystallization in a single phase of TiO2 (anatase). The surface of the samples and the oxidation states was investigated by XPS, confirming the presence of Ti, O, Zn and Cu. The antibacterial activity of the nanoparticle powder samples was verified using the gram−positive bacterium Staphylococcus aureus. The photocatalytic efficiency of the doped TiO2 nanopowders for degradation of methyl orange (MO) is here examined in order to evaluate the potential applications of these materials for environmental remediation
    corecore