262 research outputs found
Physiological, psychological and functional changes with whole body vibration exercise in the frail elderly : a thesis presented in fulfilment of the requirements for the degree of Doctor of Philosophy (PhD) in Sport & Exercise at Massey University, Wellington, New Zealand
Appendix A: Published Methods Paper was removed for copyright reasons but may be accessed via https://doi.org/10.1016/j.cct.2015.08.00
The impact of within-herd genetic variation upon inferred transmission trees for foot-and-mouth disease virus
Full-genome sequences have been used to monitor the fine-scale dynamics of epidemics caused by RNA viruses. However, the ability of this approach to confidently reconstruct transmission trees is limited by the knowledge of the genetic diversity of viruses that exist within different epidemiological units. In order to address this question, this study investigated the variability of 45 foot-and-mouth disease virus (FMDV) genome sequences (from 33 animals) that were collected during 2007 from eight premises (10 different herds) in the United Kingdom. Bayesian and statistical parsimony analysis demonstrated that these sequences exhibited clustering which was consistent with a transmission scenario describing herd-to-herd spread of the virus. As an alternative to analysing all of the available samples in future epidemics, the impact of randomly selecting one sequence from each of these herds was used to assess cost-effective methods that might be used to infer transmission trees during FMD outbreaks. Using these approaches, 85% and 91% of the resulting topologies were either identical or differed by only one edge from a reference tree comprising all of the sequences generated within the outbreak. The sequence distances that accrued during sequential transmission events between epidemiological units was estimated to be 4.6 nucleotides, although the genetic variability between viruses recovered from chronic carrier animals was higher than between viruses from animals with acute-stage infection: an observation which poses challenges for the use of simple approaches to infer transmission trees. This study helps to develop strategies for sampling during FMD outbreaks, and provides data that will guide the development of further models to support control policies in the event of virus incursions into FMD free countries
The effects of phosphatidylserine (PS) supplementation on performance during and recovery following prolonged intermittent exercise.
Prolonged intermittent exercise, in the guise of simulated soccer match play, has the potential to elevate the production of reactive oxygen species and leave participants susceptible to oxidative stress, subsequent muscle damage (Thompson et al, 2001) and muscle soreness (Wadsworth et al, 2004). Supplementation with phosphatidylserine (PS), a primary constituent of the inner membranes of neurones, has been shown to enhance cognitive function in the elderly (Pepu et al, 1996; Blokland et al, 1999) and inhibit the exercise-induced release of stress hormones (Monteleone et al, 1990; Monteleone et al, 1992; Fahey and Pearl, 1998). In addition to a myriad of membrane functions, in-vitro studies have demonstrated that PS has the potential to act as an antioxidant (Latorraca et al, 1993; Dacaranhe and Terao, 2001). Consequently, it is plausible that exogenous supplementation with PS may provide additional defence against the oxidative stress caused by exercise; however this action has yet to be explored. Therefore, the aim of the current study was to investigate the effect of chronic soybean-derived PS (S-PS) supplementation on muscle damage, delayed onset muscle soreness, and the body's response to prolonged intermittent exercise. Sixteen familiarised male subjects were administered with either 750 mg-day[-1] of S-PS or a glucose placebo, in a double-blind randomised fashion, for 10 days prior to a prolonged intermittent exercise protocol. The protocol was based on the Loughborough intermittent shuttle test (LIST) (Nicholas et al, 2000), but was adapted to specifically simulate soccer match play. Subjects' response to exercise was assessed by measuring heart rate (HR) throughout exercise, while blood lactate and glucose concentrations, and rate of perceived exertion (RPE) were measured prior to exercise, at half time, and immediately post-exercise. Moreover, perceived muscle soreness and blood concentrations of cortisol, creatine kinase (CK), lipid hydroperoxide (HPO), vitamin C, and vitamin E were measured prior to exercise and after 20 min, 24 hr, and 48 hr of recovery. The prolonged intermittent exercise protocol used in this study led to exercise- induced stress, as demonstrated by the significant elevation of blood cortisol concentrations during exercise (P<0.001). Moreover, the exercise protocol was shown to significantly elevate markers of muscle damage (P<0.001), delayed onset muscle soreness (DOMS) (P<0.001), and oxidative stress (P<0.001). These variables were affected to an equal extent in placebo and S-PS groups, and had returned to pre-exercise levels within 48 hours of recovery. However, those supplemented with S-PS did demonstrate a trend towards enhanced performance (P=0.082). It is plausible that the trend of improved performance of the S-PS group, and consequent elevation in blood cortisol concentration and oxidative stress markers, may have negated any benefits that S-PS supplementation had on these markers. Therefore, future research should attempt to clarify the potential ergogenic effect of S-PS supplementation, and ascertain if such supplementation has any effect on the elevation of blood cortisol and oxidative stress associated with prolonged intermittent exercise
First Occurrence of \u3ci\u3eHippodamia Variegata\u3c/i\u3e (Goeze) (Coleoptera: Coccinellidae) in Ohio
(excerpt)
Ladybird beetles, or coccinellids (Coleoptera: Coccinellidae), are significant arthropod predators in a variety of terrestrial ecosystems. Numerous classical biological control projects undertaken over the last 120 years in North America have involved importation of exotic ladybird beetle species for the control of invasive insect species in annual and perennial agricultural production systems
Modelling across extremal dependence classes
Different dependence scenarios can arise in multivariate extremes, entailing careful selection of an appropriate class of models. In bivariate extremes, the variables are either asymptotically dependent or are asymptotically independent. Most available statistical models suit one or other of these cases, but not both, resulting in a stage in the inference that is unaccounted for, but can substantially impact subsequent extrapolation. Existing modelling solutions to this problem are either applicable only on sub-domains, or appeal to multiple limit theories. We introduce a unified representation for bivariate extremes that encompasses a wide variety of dependence scenarios, and applies when at least one variable is large. Our representation motivates a parametric model that encompasses both dependence classes. We implement a simple version of this model, and show that it performs well in a range of settings
Microwave and Quantum Magnetics
Contains research objectives and reports on nine research projects.Joint Services Electronics Program (Contract DAAG29-80-C-0104)National Science Foundation (Grant 8008628-DAR)U.S. Army (Contract DAAG29-81-K-0126)U.S. Air Force (Contract F19628-79-C-0047
The rheological response of magma to nanolitisation
Viscosity exerts a fundamental control on magmatic kinetics and dynamics, controlling magma ascent, eruptive style, and the emplacement of lava. Nanolites – crystals smaller than a micron – are thought to affect magma viscosity, but the underlying mechanisms for this remain unclear. Here, we use a cylinder compression creep technique to measure the viscosity of supercooled silicate liquids with different amounts of iron (0–20 wt% FeOtot) as a function of temperature, applied shear stress, and time. Sample viscosity was independent on the applied shear stresses, and as expected, melt viscosity decreases as temperature is increased, but only until a critical temperature where a time-dependent increase in viscosity occurs for samples contaning 6.0 wt% FeOtot or more. The magnitude of this increase is controlled by the melt iron content. At constant temperature, these changes are substantial and can reach up to three orders of magnitude for the sample with the most iron. Using transmission electron microscopy, X-ray diffraction, and viscosity modelling, we conclude that this viscosity increase is caused by the formation of nanolites. By using scaling approaches to test suspension effects with and without crystal aggregation, we conclude that the nanolites have only a minimal direct physical effect on the observed viscosity change. Rather, our models show that it is the chemical shift in the groundmass silicate melt composition associated with non-stoichiometric crystallisation that dominates the observed viscosity increase. These findings suggest that iron-rich silicates may encounter chemical viscosity jumps once certain elements are removed from the melt phase to form nanolites. Our work demonstrates an underlying mechanism for the role played by nanolites in viscosity changes of magmas
The application of deep eutectic solvent ionic liquids for environmentally-friendly dissolution and recovery of precious metals
publisher: Elsevier articletitle: The application of deep eutectic solvent ionic liquids for environmentally-friendly dissolution and recovery of precious metals journaltitle: Minerals Engineering articlelink: http://dx.doi.org/10.1016/j.mineng.2015.09.026 content_type: article copyright: Copyright © 2015 The Authors. Published by Elsevier Ltd.© 2015 Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
- …