3 research outputs found

    Collapse of the critical state in superconducting niobium

    Full text link
    Giant abrupt changes in the magnetic flux distribution in niobium foils were studied by using magneto-optical visualization, thermal and magnetic measurements. Uniform flux jumps and sometimes almost total catastrophic collapse of the critical state are reported. Results are discussed in terms of thermomagnetic instability mechanism with different development scenarios.Comment: arXiv.org produced artifacts in color images (three versions were attempts to make better images). Download clean PDF and watch video-figures at: "http://cmp.ameslab.gov/supermaglab/video/Nb.html

    Magnetostrictive behaviour of thin superconducting disks

    Full text link
    Flux-pinning-induced stress and strain distributions in a thin disk superconductor in a perpendicular magnetic field is analyzed. We calculate the body forces, solve the magneto-elastic problem and derive formulas for all stress and strain components, including the magnetostriction ΔR/R\Delta R/R. The flux and current density profiles in the disk are assumed to follow the Bean model. During a cycle of the applied field the maximum tensile stress is found to occur approximately midway between the maximum field and the remanent state. An effective relationship between this overall maximum stress and the peak field is found.Comment: 8 pages, 6 figures, submitted to Supercond. Sci. Technol., Proceed. of MEM03 in Kyot

    Flux Dendrites of Opposite Polarity in Superconducting MgB2_2 rings observed with magneto-optical imaging

    Full text link
    Magneto-optical imaging was used to observe flux dendrites with opposite polarities simultaneously penetrate superconducting, ring-shaped MgB2_2 films. By applying a perpendicular magnetic field, branching dendritic structures nucleate at the outer edge and abruptly propagate deep into the rings. When these structures reach close to the inner edge, where flux with opposite polarity has penetrated the superconductor, they occasionally trigger anti-flux dendrites. These anti-dendrites do not branch, but instead trace the triggering dendrite in the backward direction. Two trigger mechanisms, a non-local magnetic and a local thermal, are considered as possible explanations for this unexpected behaviour. Increasing the applied field further, the rings are perforated by dendrites which carry flux to the center hole. Repeated perforations lead to a reversed field profile and new features of dendrite activity when the applied field is subsequently reduced.Comment: 6 pages, 6 figures, accepted to Phys. Rev.
    corecore