18 research outputs found

    Rich-club and page-club coefficients for directed graphs

    Full text link
    Rich-club and page-club coefficients and their null models are introduced for directed graphs. Null models allow for a quantitative discussion of the rich-club and page-club phenomena. These coefficients are computed for four directed real-world networks: Arxiv High Energy Physics paper citation network, Web network (released from Google), Citation network among US Patents, and Email network from a EU research institution. The results show a high correlation between rich-club and page-club ordering. For journal paper citation network, we identify both rich-club and page-club ordering, showing that {}"elite" papers are cited by other {}"elite" papers. Google web network shows partial rich-club and page-club ordering up to some point and then a narrow declining of the corresponding normalized coefficients, indicating the lack of rich-club ordering and the lack of page-club ordering, i.e. high in-degree (PageRank) pages purposely avoid sharing links with other high in-degree (PageRank) pages. For UC patents citation network, we identify page-club and rich-club ordering providing a conclusion that {}"elite" patents are cited by other {}"elite" patents. Finally, for e-mail communication network we show lack of both rich-club and page-club ordering. We construct an example of synthetic network showing page-club ordering and the lack of rich-club ordering.Comment: 18 pages, 6 figure

    Beyond network structure: How heterogeneous susceptibility modulates the spread of epidemics

    Get PDF
    The compartmental models used to study epidemic spreading often assume the same susceptibility for all individuals, and are therefore, agnostic about the effects that differences in susceptibility can have on epidemic spreading. Here we show that–for the SIS model–differential susceptibility can make networks more vulnerable to the spread of diseases when the correlation between a node's degree and susceptibility are positive, and less vulnerable when this correlation is negative. Moreover, we show that networks become more likely to contain a pocket of infection when individuals are more likely to connect with others that have similar susceptibility (the network is segregated). These results show that the failure to include differential susceptibility to epidemic models can lead to a systematic over/under estimation of fundamental epidemic parameters when the structure of the networks is not independent from the susceptibility of the nodes or when there are correlations between the susceptibility of connected individuals.Massachusetts Institute of Technology. Media Laboratory (ABC Career Development Chair)MIT Media Lab Consortiu

    Identifying communities by influence dynamics in social networks

    Full text link
    Communities are not static; they evolve, split and merge, appear and disappear, i.e. they are product of dynamical processes that govern the evolution of the network. A good algorithm for community detection should not only quantify the topology of the network, but incorporate the dynamical processes that take place on the network. We present a novel algorithm for community detection that combines network structure with processes that support creation and/or evolution of communities. The algorithm does not embrace the universal approach but instead tries to focus on social networks and model dynamic social interactions that occur on those networks. It identifies leaders, and communities that form around those leaders. It naturally supports overlapping communities by associating each node with a membership vector that describes node's involvement in each community. This way, in addition to overlapping communities, we can identify nodes that are good followers to their leader, and also nodes with no clear community involvement that serve as a proxy between several communities and are equally as important. We run the algorithm for several real social networks which we believe represent a good fraction of the wide body of social networks and discuss the results including other possible applications.Comment: 10 pages, 6 figure

    Human-Centered Tools for Coping with Imperfect Algorithms during Medical Decision-Making

    Full text link
    Machine learning (ML) is increasingly being used in image retrieval systems for medical decision making. One application of ML is to retrieve visually similar medical images from past patients (e.g. tissue from biopsies) to reference when making a medical decision with a new patient. However, no algorithm can perfectly capture an expert's ideal notion of similarity for every case: an image that is algorithmically determined to be similar may not be medically relevant to a doctor's specific diagnostic needs. In this paper, we identified the needs of pathologists when searching for similar images retrieved using a deep learning algorithm, and developed tools that empower users to cope with the search algorithm on-the-fly, communicating what types of similarity are most important at different moments in time. In two evaluations with pathologists, we found that these refinement tools increased the diagnostic utility of images found and increased user trust in the algorithm. The tools were preferred over a traditional interface, without a loss in diagnostic accuracy. We also observed that users adopted new strategies when using refinement tools, re-purposing them to test and understand the underlying algorithm and to disambiguate ML errors from their own errors. Taken together, these findings inform future human-ML collaborative systems for expert decision-making
    corecore