68 research outputs found
Centrally Administered Nociceptin/Orphanin FQ (N/OFQ) Evokes Bradycardia, Hypotension, and Diuresis in Mice via Activation of Central N/OFQ Peptide Receptors
ABSTRACT The present studies examined the cardiovascular and renal responses produced by activation of central nociceptin/orphanin FQ (N/OFQ) peptide (NOP) receptors in conscious mice. To assess this, we examined changes in heart rate (HR), mean arterial pressure (MAP), urine output (V), urinary sodium excretion (UNaV), and free water clearance (CH
Cosmological Constant, Dark Matter, and Electroweak Phase Transition
Accepting the fine tuned cosmological constant hypothesis, we have recently
proposed that this hypothesis can be tested if the dark matter freeze out
occurs at the electroweak scale and if one were to measure an anomalous shift
in the dark matter relic abundance. In this paper, we numerically compute this
relic abundance shift in the context of explicit singlet extensions of the
Standard Model and explore the properties of the phase transition which would
lead to the observationally most favorable scenario. Through the numerical
exploration, we explicitly identify a parameter space in a singlet extension of
the standard model which gives order unity observable effects. We also clarify
the notion of a temperature dependence in the vacuum energy.Comment: 58 pages, 10 figure
Sterile neutrino production via active-sterile oscillations: the quantum Zeno effect
We study several aspects of the kinetic approach to sterile neutrino
production via active-sterile mixing. We obtain the neutrino propagator in the
medium including self-energy corrections up to , from which
we extract the dispersion relations and damping rates of the propagating modes.
The dispersion relations are the usual ones in terms of the index of refraction
in the medium, and the damping rates are where
is the active neutrino scattering rate and
is the mixing angle in the medium. We provide a generalization of
the transition probability in the \emph{medium from expectation values in the
density matrix}: and
study the conditions for its quantum Zeno suppression directly in real time. We
find the general conditions for quantum Zeno suppression, which for sterile neutrinos with \emph{may
only be} fulfilled near an MSW resonance. We discuss the implications for
sterile neutrino production and argue that in the early Universe the wide
separation of relaxation scales far away from MSW resonances suggests the
breakdown of the current kinetic approach.Comment: version to appear in JHE
Dynamical renormalization group approach to transport in ultrarelativistic plasmas: the electrical conductivity in high temperature QED
The DC electrical conductivity of an ultrarelativistic QED plasma is studied
in real time by implementing the dynamical renormalization group. The
conductivity is obtained from the realtime dependence of a dissipative kernel
related to the retarded photon polarization. Pinch singularities in the
imaginary part of the polarization are manifest as growing secular terms that
in the perturbative expansion of this kernel. The leading secular terms are
studied explicitly and it is shown that they are insensitive to the anomalous
damping of hard fermions as a result of a cancellation between self-energy and
vertex corrections. The resummation of the secular terms via the dynamical
renormalization group leads directly to a renormalization group equation in
real time, which is the Boltzmann equation for the (gauge invariant) fermion
distribution function. A direct correspondence between the perturbative
expansion and the linearized Boltzmann equation is established, allowing a
direct identification of the self energy and vertex contributions to the
collision term.We obtain a Fokker-Planck equation in momentum space that
describes the dynamics of the departure from equilibrium to leading logarithmic
order in the coupling.This determines that the transport time scale is given by
t_{tr}=(24 pi)/[e^4 T \ln(1/e)}]. The solution of the Fokker-Planck equation
approaches asymptotically the steady- state solution as sim e^{-t/(4.038
t_{tr})}.The steady-state solution leads to the conductivity sigma = 15.698
T/[e^2 ln(1/e)] to leading logarithmic order. We discuss the contributions
beyond leading logarithms as well as beyond the Boltzmann equation. The
dynamical renormalization group provides a link between linear response in
quantum field theory and kinetic theory.Comment: LaTex, 48 pages, 14 .ps figures, final version to appear in Phys.
Rev.
Anomalous Pseudoscalar-Photon Vertex In and Out of Equilibrium
The anomalous pseudoscalar-photon vertex is studied in real time in and out
of equilibrium in a constituent quark model. The goal is to understand the
in-medium modifications of this vertex, exploring the possibility of enhanced
isospin breaking by electromagnetic effects as well as the formation of neutral
pion condensates in a rapid chiral phase transition in peripheral,
ultrarelativistic heavy-ion collisions. In equilibrium the effective vertex is
afflicted by infrared and collinear singularities that require hard thermal
loop (HTL) and width corrections of the quark propagator. The resummed
effective equilibrium vertex vanishes near the chiral transition in the chiral
limit. In a strongly out of equilibrium chiral phase transition we find that
the chiral condensate drastically modifies the quark propagators and the
effective vertex. The ensuing dynamics for the neutral pion results in a
potential enhancement of isospin breaking and the formation of
condensates. While the anomaly equation and the axial Ward identity are not
modified by the medium in or out of equilibrium, the effective real-time
pseudoscalar-photon vertex is sensitive to low energy physics.Comment: Revised version to appear in Phys. Rev. D. 42 pages, 4 figures, uses
Revte
- …