3 research outputs found

    Modelling the expected participation of future smart households in demand side management, within published energy scenarios

    Get PDF
    The 2050 national energy scenarios as planned by the DECC, academia and industry specify a range of different decarbonised supply side technologies combined with the electrification of transportation and heating. Little attention is paid to the household demand side; indeed within many scenarios a high degree of domestic Demand Side Management (DSM) is implicit if the National Grid is to maintain supply-demand balance. A top-down, bottom-up hybrid model named Shed-able Household Energy Demand (SHED) has been developed and the results of which presented within this thesis. SHED models six published national energy scenarios, including three from the Department for Energy and Climate Change, in order to provide a broad coverage of the possible energy scenario landscape. The objective of which is to quantify the required changes in current household energy demand patterns via DSM, as are implicit under these highly electricity dominated scenarios, in order to maintain electrical supply-demand balance at the national level. The frequency and magnitude of these required household DSM responses is quantified. SHED performs this by modelling eleven years of supply-demand dynamics on the hourly time step, based on the assumptions of the published energy scenarios as well as weather data from around 150 weather stations around the UK and National Grid historic electricity demand data. The bottom-up component of SHED is populated by 1,000 households hourly gas and electricity demand data from a recently released dataset from a smart metering trial in Ireland. This aggregate pool of households enables national domestic DSM dynamics to be disaggregated to the aggregate household level. Using household classifications developed by the Office for National Statistics three typical ' households are identified within the aggregate pool and algorithms developed to investigate the possible required responses from these three households. SHED is the first model of its kind to connect national energy scenarios to the implications these scenarios may have on households consumption of energy at a high temporal resolution. The analysis of the top-down scenario modelling shows significant periods where electrical demand exceeds supply within all scenarios, within many scenarios instances exist where the deficit is unserviceable due to lack of sufficient spare capacity either side of the deficit period. Considering the level of participation required within the modelled scenarios in order to balance the electricity system and the current lack in understanding of smart metering and Time-Of-Use (TOU) tariffs within households, it would seem there is a disconnect between the electricity system being planned, the role this system expects of households and the role households are willing to play

    The implications of heat electrification on national electrical supply-demand balance under published 2050 energy scenarios

    Get PDF
    Published UK 2050 energy scenarios specify a range of decarbonised supply side technologies combined with electrification of transportation and heating. These scenarios are designed to meet CO2 reduction targets whilst maintaining reliability of supply. Current models of the UK energy system either make significant assumptions about the role of demand side management or do not carry out the analysis at sufficient resolution and hence determining the impact of heat electrification on the reliability of supply of the scenarios is not possible. This paper presents a new model that estimates national supply and demand, hour-by-hour. Calculations are based on 11 years of weather data which allows a probabilistic assessment of deficit frequency throughout the day. It is found that achieving demand reduction targets are far more important than meeting electrification targets and that significant adoption of CHP is most likely to deliver a viable energy future for the UK

    LEEDR: what are the results? Participant feedback for H99

    Get PDF
    The LEEDR project was a four-year study that explored energy consumption in family homes. 20 households took part, being involved for about three years. Insights were fed back to the participants at the end of the project in the form of a unique, tailored book for each family. This book represents the style, formatting and information content of those books. This version has been called ‘H99’ and it is an amalgam of chapters from multiple homes, and therefore should not be used as a source of data or analysis: please refer to publications. The information contained here has been released generally in the hope that it might inspire and inform the development of feedback from other similar projects
    corecore