70 research outputs found

    Bolla Bollana boulder beds:A Neoproterozoic trough mouth fan in South Australia?

    Get PDF
    The Bolla Bollana Formation is an exceptionally thick (ca 1500 m), rift-related sedimentary succession cropping out in the northern Flinders Ranges, South Australia, which was deposited during the Sturtian (mid Cryogenian) glaciation. Lithofacies analysis reveals three distinct facies associations which chart changing depositional styles on an ice-sourced subaqueous fan system. The diamictite facies association is dominant, and comprises both massive and stratified varieties with a range of clast compositions and textures, arranged into thick beds (1 to 20 m), representing stacked, ice-proximal glaciogenic debris-flow deposits. A channel belt facies association, most commonly consisting of normally graded conglomerates and sandstones, displays scour and fill structure of ca 10 m width and 1 to 3 m depth: these strata are interpreted as channelized turbidites. Rare mud-filled channels in this facies association bear glacially striated lonestones. Finally, a sheet heterolithics facies association contains a range of conglomerates through sandstones to silty shales arranged into clear, normally graded cycles from the lamina to bed scale. These record a variety of non-channelized turbidites, probably occupying distal and/or inter-channel locations on the subaqueous fan. Coarsening and thickening-up cycles, capped by dolomicrites or mudstones, are indicative of lobe build out and abandonment, potentially as a result of ice lobe advance and stagnation. Dropstones, recognized by downwarped and punctured laminae beneath pebbles to boulders in shale, or in delicate climbing ripple cross-laminated siltstones, are clearly indicative of ice rafting. The co-occurrence of ice-rafted debris and striated lonestones strongly supports a glaciogenic sediment source for the diamictites. Comparison to Pleistocene analogues enables an interpretation as a trough mouth fan, most probably deposited leeward of a palaeo-ice stream. Beyond emphasizing the highly dynamic nature of Sturtian ice sheets, these interpretations testify to the oldest trough mouth fan recorded to date.Daniel P. Le Heron, Marie E. Busfield, and Alan S. Collin

    An Introduction to Glaciated Margins::The Sedimentary and Geophysical Archive

    Get PDF
    A glaciated margin is a continental margin that has been occupied by a large ice mass, such that glacial processes and slope processes conspire to produce a thick sedimentary record. Ice masses take an active role in sculpting, redistributing and reorganizing the sediment that they erode on the continental shelf, and act as a supply route to large fan systems (e.g. trough mouth fans, submarine fans) on the continental slope and continental rise. To many researchers, the term ‘glaciated margin’ is synonymous with modern day areas fringing Antarctica and the Arctic shelf systems, yet the geological record contains ancient examples ranging in age from Precambrian to Cenozoic. In the pre-Pleistocene record, there is a tendency for the configuration of the tectonic plates to become increasingly obscure with age. For instance, in the Neoproterozoic record, not everyone agrees on the location of rift margins and some fundamental continental boundaries remain unclear. Given these issues, this introductory paper has two simple aims: (1) to provide a brief commentary of relevant Geological Society publications on glaciated margins, with the landmark papers highlighted and (2) to explain the contents of this volume

    Indicators of relative completeness of the glacial record of the Port Askaig Formation, Garvellach Islands, Scotland

    Get PDF
    The Port Askaig Formation (PAF) is a diamictite-bearing succession in the Dalradian Supergroup of Scotland that provides an excellent archive of a Cryogenian glaciation in the Garvellach Islands and Islay, Argyll. The formation is ∼1100 m thick, comprises 5 members and includes 47 diamictite beds, interbedded with siltstones, dolostones and sandstones. Here we document seven features of the PAF that indicate its relative stratigraphic completeness. There are gradual, progressive changes up-section in the lithologies of the diamictites, their interbeds, and clast lithologies. The sharp basal surfaces of the diamictites each show the same, repeated pattern of environmental change, from non-glacial to glacial. Many of the top surfaces of the diamictites show evidence of periglacial conditions. The succession in the PAF records a total of 76 climatically-related stratigraphic episodes: 28 glacial episodes, 25 periglacial episodes and 23 non-glacial episodes. Parts of Member 1 (Diamictites 1–12 and Diamictites 16–18) and Member 2 (Diamictite 31 to the base of Member 3) are most compete on the east coast of Garbh Eileach. The PAF in the Garvellach Islands occurs within a succession that is several kilometres thick, as newly revealed by sea-floor mapping. Compared with other Cryogenian and Phanerozoic glacial successions, the PAF is exceptional in its combination of formation thickness, the number of climatically-related stratigraphic episodes, and the considerable thickness of its host supergroup. Furthermore, these indicators of relative stratigraphic completeness provide evidence that the base of the PAF on the east coast of Garbh Eileach is a succession without a major break in deposition, supporting the account of the strata at and below the base of the PAF in the companion article by Fairchild et al. (2018)

    Precambrian olistoliths masquerading as sills from Death Valley, California

    Get PDF
    Olistolith production and magmatism are processes commonly associated with extensional tectonic settings, such as rift basins. We present a cautionary exemplar from one such Precambrian basin, in which we reinterpret metabasite bodies, previously documented as sills, to be olistoliths. We nevertheless demonstrate that, on the basis of field observation alone, the previous but erroneous sill interpretation is parsimonious. Indeed, it is only by using isotopic age and compositional analysis that the true identities of these metabasite olistoliths are revealed. We present new data from metabasites and metasedimentary strata of the Kingston Peak Formation (Cryogenian) and Crystal Spring Formation (Mesoproterozoic) of Death Valley, USA. These include field observations, U?Pb apatite ages, U?Pb zircon ages (detrital and igneous) and whole-rock geochemistry. These data also provide a new maximum age for the base of the Pahrump Group and suggest that the Crystal Spring Diabase was more tholeiitic than previously thought. Similar sill/olistolith misinterpretations may have occurred elsewhere, potentially producing erroneous age and tectonic-setting interpretations of surrounding strata. This is particularly relevant in Precambrian rocks, where fossil age constraints are rare. This is illustrated herein using a potential example from the Neoproterozoic literature of the Lufilian belt, Africa. We caution others against Precambrian olistoliths masquerading as sills.publishersversionPeer reviewe
    • …
    corecore