9 research outputs found

    Forecasting realized volatility using a nonnegative semiparametric model

    Get PDF
    This paper introduces a parsimonious and yet flexible semiparametric model to forecast financial volatility. The new model extends a related linear nonnegative autoregressive model previously used in the volatility literature by way of a power transformation. It is semiparametric in the sense that the distributional and functional form of its error component is partially unspecified. The statistical properties of the model are discussed and a novel estimation method is proposed. Simulation studies validate the new method and suggest that it works reasonably well in finite samples. The out-of-sample forecasting performance of the proposed model is evaluated against a number of standard models, using data on S&P 500 monthly realized volatilities. Some commonly used loss functions are employed to evaluate the predictive accuracy of the alternative models. It is found that the new model generally generates highly competitive forecasts

    A Practical Guide to Harnessing the HAR Volatility Model

    No full text
    The standard heterogeneous autoregressive (HAR) model is perhaps the most popular benchmark model for forecasting return volatility. It is often estimated using raw realized variance (RV) and ordinary least squares (OLS). However, given the stylized facts of RV and well-known properties of OLS, this combination should be far from ideal. One goal of this paper is to investigate how the predictive accuracy of the HAR model depends on the choice of estimator, transformation, and forecasting scheme made by the market practitioner. Another goal is to examine the effect of replacing its high-frequency data based volatility proxy (RV) with a proxy based on free and publicly available low-frequency data (logarithmic range). In an out-of-sample study, covering three major stock market indices over 16 years, it is found that simple remedies systematically outperform not only standard HAR but also state of the art HARQ forecasts, and that HAR models using logarithmic range can often produce forecasts of similar quality to those based on RV

    Crisis: Proposing a Diversified and Interacted Solution

    No full text
    corecore