9 research outputs found

    LibFTE: A Toolkit for Constructing Practical, Format-Abiding Encryption Schemes

    Get PDF
    Abstract Encryption schemes where the ciphertext must abide by a specified format have diverse applications, ranging from in-place encryption in databases to per-message encryption of network traffic for censorship circumvention. Despite this, a unifying framework for deploying such encryption schemes has not been developed. One consequence of this is that current schemes are ad-hoc; another is a requirement for expert knowledge that can disuade one from using encryption at all. We present a general-purpose library (called libfte) that aids engineers in the development and deployment of format-preserving encryption (FPE) and formattransforming encryption (FTE) schemes. It incorporates a new algorithmic approach for performing FPE/FTE using the nondeterministic finite-state automata (NFA) representation of a regular expression when specifying formats. This approach was previously considered unworkable, and our approach closes this open problem. We evaluate libfte and show that, compared to other encryption solutions, it introduces negligible latency overhead, and can decrease diskspace usage by as much as 62.5% when used for simultaneous encryption and compression in a PostgreSQL database (both relative to conventional encryption mechanisms). In the censorship circumvention setting we show that, using regularexpression formats lifted from the Snort IDS, libfte can reduce client/server memory requirements by as much as 30%

    Composite Constant Propagation and its Application to Android Program Analysis

    No full text

    LibFTE: A Toolkit for Constructing Practical, Format-Abiding Encryption Schemes

    No full text
    Abstract Encryption schemes where the ciphertext must abide by a specified format have diverse applications, ranging from in-place encryption in databases to per-message encryption of network traffic for censorship circumvention. Despite this, a unifying framework for deploying such encryption schemes has not been developed. One consequence of this is that current schemes are ad-hoc; another is a requirement for expert knowledge that can disuade one from using encryption at all. We present a general-purpose library (called libfte) that aids engineers in the development and deployment of format-preserving encryption (FPE) and formattransforming encryption (FTE) schemes. It incorporates a new algorithmic approach for performing FPE/FTE using the nondeterministic finite-state automata (NFA) representation of a regular expression when specifying formats. This approach was previously considered unworkable, and our approach closes this open problem. We evaluate libfte and show that, compared to other encryption solutions, it introduces negligible latency overhead, and can decrease diskspace usage by as much as 62.5% when used for simultaneous encryption and compression in a PostgreSQL database (both relative to conventional encryption mechanisms). In the censorship circumvention setting we show that, using regularexpression formats lifted from the Snort IDS, libfte can reduce client/server memory requirements by as much as 30%
    corecore