130 research outputs found

    Report of the committee on a commercially developed space facility

    Get PDF
    Major facilities that could support significant microgravity research and applications activity are discussed. The ground-based facilities include drop towers, aircraft flying parabolic trajectories, and sounding rockets. Facilities that are intrinsically tied to the Space Shuttle range from Get-Away-Special canisters to Spacelab long modules. There are also orbital facilities which include recoverable capsules launched on expendable launch vehicles, free-flying spacecraft, and space stations. Some of these existing, planned, and proposed facilities are non-U.S. in origin, but potentially available to U.S. investigators. In addition, some are governmentally developed and operated whereas others are planned to be privately developed and/or operated. Tables are provided to show the facility, developer, duration, estimated gravity level, crew interaction, flight frequency, year available, power to payload, payload volume, and maximum payload mass. The potential of direct and indirect benefits of manufacturing in space are presented

    The AllWISE Motion Survey, Part 2

    Get PDF
    We use the AllWISE Data Release to continue our search for WISE-detected motions. In this paper, we publish another 27,846 motion objects, bringing the total number to 48,000 when objects found during our original AllWISE motion survey are included. We use this list, along with the lists of confirmed WISE-based motion objects from the recent papers by Luhman and by Schneider et al. and candidate motion objects from the recent paper by Gagne et al. to search for widely separated, common-proper-motion systems. We identify 1,039 such candidate systems. All 48,000 objects are further analyzed using color-color and color-mag plots to provide possible characterizations prior to spectroscopic follow-up. We present spectra of 172 of these, supplemented with new spectra of 23 comparison objects from the literature, and provide classifications and physical interpretations of interesting sources. Highlights include: (1) the identification of three G/K dwarfs that can be used as standard candles to study clumpiness and grain size in nearby molecular clouds because these objects are currently moving behind the clouds, (2) the confirmation/discovery of several M, L, and T dwarfs and one white dwarf whose spectrophotometric distance estimates place them 5-20 pc from the Sun, (3) the suggestion that the Na 'D' line be used as a diagnostic tool for interpreting and classifying metal-poor late-M and L dwarfs, (4) the recognition of a triple system including a carbon dwarf and late-M subdwarf, for which model fits of the late-M subdwarf (giving [Fe/H] ~ -1.0) provide a measured metallicity for the carbon star, and (5) a possible 24-pc-distant K5 dwarf + peculiar red L5 system with an apparent physical separation of 0.1 pc.Comment: 62 pages with 80 figures, accepted for publication in The Astrophysical Journal Supplement Series, 23 Mar 2016; second version fixes a few small typos and corrects the footnotes for Table

    Detection of Pancreatic Carcinomas by Imaging Lactose-Binding Protein Expression in Peritumoral Pancreas Using [18F]Fluoroethyl-Deoxylactose PET/CT

    Get PDF
    BACKGROUND: Early diagnosis of pancreatic carcinoma with highly sensitive diagnostic imaging methods could save lives of many thousands of patients, because early detection increases resectability and survival rates. Current non-invasive diagnostic imaging techniques have inadequate resolution and sensitivity for detection of small size ( approximately 2-3 mm) early pancreatic carcinoma lesions. Therefore, we have assessed the efficacy of positron emission tomography and computer tomography (PET/CT) imaging with beta-O-D-galactopyranosyl-(1,4')-2'-deoxy-2'-[(18)F]fluoroethyl-D-glucopyranose ([(18)F]FEDL) for detection of less than 3 mm orthotopic xenografts of L3.6pl pancreatic carcinomas in mice. [(18)F]FEDL is a novel radioligand of hepatocarcinoma-intestine-pancreas/pancreatitis-associated protein (HIP/PAP), which is overexpressed in peritumoral pancreatic acinar cells. METHODOLOGY/PRINCIPAL FINDINGS: Dynamic PET/CT imaging demonstrated rapid accumulation of [(18)F]FEDL in peritumoral pancreatic tissue (4.04+/-2.06%ID/g), bi-exponential blood clearance with half-lives of 1.65+/-0.50 min and 14.14+/-3.60 min, and rapid elimination from other organs and tissues, predominantly by renal clearance. Using model-independent graphical analysis of dynamic PET data, the average distribution volume ratio (DVR) for [(18)F]FEDL in peritumoral pancreatic tissue was estimated as 3.57+/-0.60 and 0.94+/-0.72 in sham-operated control pancreas. Comparative analysis of quantitative autoradiographic images and densitometry of immunohistochemically stained and co-registered adjacent tissue sections demonstrated a strong linear correlation between the magnitude of [(18)F]FEDL binding and HIP/PAP expression in corresponding regions (r = 0.88). The in situ analysis demonstrated that at least a 2-4 fold apparent lesion size amplification was achieved for submillimeter tumors and to nearly half a murine pancreas for tumors larger than 3 mm. CONCLUSION/SIGNIFICANCE: We have demonstrated the feasibility of detection of early pancreatic tumors by non-invasive imaging with [(18)F]FEDL PET/CT of tumor biomarker HIP/PAP over-expressed in peritumoral pancreatic tissue. Non-invasive non-invasive detection of early pancreatic carcinomas with [(18)F]FEDL PET/CT imaging should aid the guidance of biopsies and additional imaging procedures, facilitate the resectability and improve the overall prognosis

    Mutation in erythroid specific transcription factor KLF1 causes Hereditary Spherocytosis in the Nan hemolytic anemia mouse model

    Get PDF
    KLF1 regulates definitive erythropoiesis of red blood cells by facilitating transcription through high affinity binding to CACCC elements within its erythroid specific target genes including those encoding erythrocyte membrane skeleton (EMS) proteins. Deficiencies of EMS proteins in humans lead to the hemolytic anemia Hereditary Spherocytosis (HS) which includes a subpopulation with no known genetic defect. Here we report that a mutation, E339D, in the second zinc finger domain of KLF1 is responsible for HS in the mouse model Nan. The causative nature of this mutation was verified with an allelic test cross between Nan/+ and heterozygous Klf1(+/-) knockout mice. Homology modeling predicted Nan KLF1 binds CACCC elements more tightly, suggesting that Nan KLF1 is a competitive inhibitor of wild-type KLF1. This is the first association of a KLF1 mutation with a disease state in adult mammals and also presents the possibility of being another causative gene for HS in humans

    The AllWISE Motion Survey and the Quest for Cold Subdwarfs

    Get PDF
    The AllWISE processing pipeline has measured motions for all objects detected on Wide-field Infrared Survey Explorer (WISE) images taken between 2010 January and 2011 February. In this paper, we discuss new capabilities made to the software pipeline in order to make motion measurements possible, and we characterize the resulting data products for use by future researchers. Using a stringent set of selection criteria, we find 22,445 objects that have significant AllWISE motions, of which 3525 have motions that can be independently confirmed from earlier Two Micron All Sky Survey (2MASS) images, yet lack any published motions in SIMBAD. Another 58 sources lack 2MASS counterparts and are presented as motion candidates only. Limited spectroscopic follow-up of this list has already revealed eight new L subdwarfs. These may provide the first hints of a "subdwarf gap" at mid-L types that would indicate the break between the stellar and substellar populations at low metallicities (i.e., old ages). Another object in the motion list—WISEA J154045.67–510139.3—is a bright (J ≈ 9 mag) object of type M6; both the spectrophotometric distance and a crude preliminary parallax place it ~6 pc from the Sun. We also compare our list of motion objects to the recently published list of 762 WISE motion objects from Luhman. While these first large motion studies with WISE data have been very successful in revealing previously overlooked nearby dwarfs, both studies missed objects that the other found, demonstrating that many other nearby objects likely await discovery in the AllWISE data products

    Enrichment measurement by passive γ-ray spectrometry of uranium dioxide fuel pellets using a europium-doped, strontium iodide scintillator

    Get PDF
    The performance of a europium-doped strontium iodide scintillator for uranium enrichment measurement of a variety of sintered uranium dioxide fuel pellets is described and compared to that of caesium iodide and sodium iodide. Enrichment has been determined via passive γ-ray spectrometry of the 186 keV line from uranium-235 using gross count, net count, and peak ratio analyses. The 38 mm Ø x 38 mm strontium iodide crystal demonstrates superior energy resolution (3.43 ± 0.03% at 662 keV) and competitive detection efficiency for its size in the energy range of interest for uranium enrichment analysis (<250 keV). It demonstrates better χ v 2 and coefficient of determination values than caesium iodide and sodium iodide when measuring uranium enrichment using the gross- and net-count from the 186 keV emission. It is shown to have the least measurement variance of the three scintillators studied in determining the uranium enrichment of pellets in a blind test, with a relative error comparative to sodium iodide and smaller than caesium iodide. This research heralds the potential of strontium iodide in passive γ-ray uranium enrichment applications

    The unusual M-dwarf Warm Jupiter TOI-1899~b: Refinement of orbital and planetary parameters

    Full text link
    TOI-1899~b is a rare exoplanet, a temperate Warm Jupiter orbiting an M-dwarf, first discovered by \citet{Canas2020_toi1899} from a TESS single-transit event. Using new radial velocities (RVs) from the precision RV spectrographs HPF and NEID, along with additional TESS photometry and ground-based transit follow-up, we are able to derive a much more precise orbital period of P=29.0903120.000035+0.000036P = 29.090312_{-0.000035}^{+0.000036}~d, along with a radius of Rp=0.99±0.03R_p = 0.99\pm0.03~\unit{R_{J}}. We have also improved the constraints on planet mass, Mp=0.67±0.04M_p = 0.67\pm{0.04}~\unit{M_{J}}, and eccentricity, which is consistent with a circular orbit at 2σ\sigma (e=0.0440.027+0.029e = 0.044_{-0.027}^{+0.029}). TOI-1899~b occupies a unique region of parameter space as the coolest known (TeqT_{eq} \approx 380~K) Jovian-sized transiting planet around an M-dwarf; we show that it has great potential to provide clues regarding the formation and migration mechanisms of these rare gas giants through transmission spectroscopy with JWST as well as studies of tidal evolution.Comment: 19 pages, 7 figures, 3 tables, submitted to AJ (comments welcome
    corecore