69 research outputs found
Global semantic typing for inductive and coinductive computing
Inductive and coinductive types are commonly construed as ontological
(Church-style) types, denoting canonical data-sets such as natural numbers,
lists, and streams. For various purposes, notably the study of programs in the
context of global semantics, it is preferable to think of types as semantical
properties (Curry-style). Intrinsic theories were introduced in the late 1990s
to provide a purely logical framework for reasoning about programs and their
semantic types. We extend them here to data given by any combination of
inductive and coinductive definitions. This approach is of interest because it
fits tightly with syntactic, semantic, and proof theoretic fundamentals of
formal logic, with potential applications in implicit computational complexity
as well as extraction of programs from proofs. We prove a Canonicity Theorem,
showing that the global definition of program typing, via the usual (Tarskian)
semantics of first-order logic, agrees with their operational semantics in the
intended model. Finally, we show that every intrinsic theory is interpretable
in a conservative extension of first-order arithmetic. This means that
quantification over infinite data objects does not lead, on its own, to
proof-theoretic strength beyond that of Peano Arithmetic. Intrinsic theories
are perfectly amenable to formulas-as-types Curry-Howard morphisms, and were
used to characterize major computational complexity classes Their extensions
described here have similar potential which has already been applied
A generic imperative language for polynomial time
The ramification method in Implicit Computational Complexity has been
associated with functional programming, but adapting it to generic imperative
programming is highly desirable, given the wider algorithmic applicability of
imperative programming. We introduce a new approach to ramification which,
among other benefits, adapts readily to fully general imperative programming.
The novelty is in ramifying finite second-order objects, namely finite
structures, rather than ramifying elements of free algebras. In so doing we
bridge between Implicit Complexity's type theoretic characterizations of
feasibility, and the data-flow approach of Static Analysis.Comment: 18 pages, submitted to a conferenc
Implicit complexity for coinductive data: a characterization of corecurrence
We propose a framework for reasoning about programs that manipulate
coinductive data as well as inductive data. Our approach is based on using
equational programs, which support a seamless combination of computation and
reasoning, and using productivity (fairness) as the fundamental assertion,
rather than bi-simulation. The latter is expressible in terms of the former. As
an application to this framework, we give an implicit characterization of
corecurrence: a function is definable using corecurrence iff its productivity
is provable using coinduction for formulas in which data-predicates do not
occur negatively. This is an analog, albeit in weaker form, of a
characterization of recurrence (i.e. primitive recursion) in [Leivant, Unipolar
induction, TCS 318, 2004].Comment: In Proceedings DICE 2011, arXiv:1201.034
The Ackermann Award 2017
The Ackermann Award is the EACSL Outstanding Dissertation Award for Logic in Computer Science. It is presented during the annual conference of the EACSL (CSL\u27xx). This contribution reports on the 2017 edition of the award
Provably Total Functions of Arithmetic with Basic Terms
A new characterization of provably recursive functions of first-order
arithmetic is described. Its main feature is using only terms consisting of 0,
the successor S and variables in the quantifier rules, namely, universal
elimination and existential introduction.Comment: In Proceedings DICE 2011, arXiv:1201.034
Primitive recursion in the abstract
International audienceRecurrence can be used as a function definition schema for any non-trivial free algebra, yielding the same computational complexity in all cases. We show that primitive-recursive computing is in fact independent of free algebras altogether, and can be characterized by a generic programming principle, namely the control of iteration by the depletion of finite components of the underlying structure
- …