3,246 research outputs found

    Spray combustion experiments and numerical predictions

    Get PDF
    The next generation of commercial aircraft will include turbofan engines with performance significantly better than those in the current fleet. Control of particulate and gaseous emissions will also be an integral part of the engine design criteria. These performance and emission requirements present a technical challenge for the combustor: control of the fuel and air mixing and control of the local stoichiometry will have to be maintained much more rigorously than with combustors in current production. A better understanding of the flow physics of liquid fuel spray combustion is necessary. This paper describes recent experiments on spray combustion where detailed measurements of the spray characteristics were made, including local drop-size distributions and velocities. Also, an advanced combustor CFD code has been under development and predictions from this code are compared with experimental results. Studies such as these will provide information to the advanced combustor designer on fuel spray quality and mixing effectiveness. Validation of new fast, robust, and efficient CFD codes will also enable the combustor designer to use them as additional design tools for optimization of combustor concepts for the next generation of aircraft engines

    Impact of Multiple Scattering on Longwave Radiative Transfer Involving Clouds

    Full text link
    General circulation models (GCMs) are extensively used to estimate the influence of clouds on the global energy budget and other aspects of climate. Because radiative transfer computations involved in GCMs are costly, it is typical to consider only absorption but not scattering by clouds in longwave (LW) spectral bands. In this study, the flux and heating rate biases due to neglecting the scattering of LW radiation by clouds are quantified by using advanced cloud optical property models, and satellite data from CloudĆ¢ Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO), CloudSat, Clouds and the Earthā€™s Radiant Energy System (CERES), and Moderate Resolution Imaging Spectrometer (MODIS) merged products (CCCM). From the products, information about the atmosphere and clouds (microphysical and buck optical properties, and top and base heights) is used to simulate fluxes and heating rates. OneĆ¢ year global simulations for 2010 show that the LW scattering decreases topĆ¢ ofĆ¢ atmosphere (TOA) upward flux and increases surface downward flux by 2.6 and 1.2 W/m2, respectively, or approximately 10% and 5% of the TOA and surface LW cloud radiative effect, respectively. Regional TOA upward flux biases are as much as 5% of global averaged outgoing longwave radiation (OLR). LW scattering causes approximately 0.018 K/d cooling at the tropopause and about 0.028 K/d heating at the surface. Furthermore, over 40% of the total OLR bias for ice clouds is observed in 350Ć¢ 500 cmĆ¢ 1. Overall, the radiative effects associated with neglecting LW scattering are comparable to the counterpart due to doubling atmospheric CO2 under clearĆ¢ sky conditions.Key PointsGlobal impacts of LW scattering are evaluated by using high spatial resolution satelliteĆ¢ derived cloud properties and top and base heightsOmitting cloud LW scattering increases annual mean TOA upward flux by 2.6 W/m2 and decreases annual mean surface downward flux by 1.2 W/m2Including LW scattering of clouds in simulations cools the tropopause approximately 0.018 K/d and heats the surface about 0.028 K/dPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141388/1/jame20524_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/141388/2/jame20524.pd

    Soybean-Based Adhesive Resins and Composite Products Utilizing Such Adhesives (2001)

    Get PDF
    The present invention relates to a soybean-based adhesive resin including a soybean flour and a cross-linking agent. The cross-linking agent is reacted with the functional groups in the soybean flour to form an adhesive resin. The present invention also relates to a method of making a soybeanbased adhesive resin. This method involves providing an aqueous solution of soybean flour and adding a cross-linking agent to the solution under conditions effective to cross-link the soybean flour so that an adhesive resin is formed. Also disclosed is a composite product which includes particulate plant material and the soybean-based adhesive resin. The adhesive is prepared by reacting the cross-linking agent with the functional groups in the soybean flour. The present invention also relates to a method of making a composite product by providing particulate plant material and applying the soybean-based adhesive resin to the particulate plant material

    Intrastrain and interstrain genetic variation within a paralogous gene family in Chlamydia pneumoniae

    Get PDF
    BACKGROUND: Chlamydia pneumoniae causes human respiratory diseases and has recently been associated with atherosclerosis. Analysis of the three recently published C. pneumoniae genomes has led to the identification of a new gene family (the Cpn 1054 family) that consists of 11 predicted genes and gene fragments. Each member encodes a polypeptide with a hydrophobic domain characteristic of proteins localized to the inclusion membrane. RESULTS: Comparative analysis of this gene family within the published genome sequences provided evidence that multiple levels of genetic variation are evident within this single collection of paralogous genes. Frameshift mutations are found that result in both truncated gene products and pseudogenes that vary among isolates. Several genes in this family contain polycytosine (polyC) tracts either upstream or within the terminal 5' end of the predicted coding sequence. The length of the polyC stretch varies between paralogous genes and within single genes in the three genomes. Sequence analysis of genomic DNA from a collection of 12 C. pneumoniae clinical isolates was used to determine the extent of the variation in the Cpn 1054 gene family. CONCLUSIONS: These studies demonstrate that sequence variability is present both among strains and within strains at several of the loci. In particular, changes in the length of the polyC tract associated with the different Cpn 1054 gene family members are common within each tested C. pneumoniae isolate. The variability identified within this newly described gene family may modulate either phase or antigenic variation and subsequent physiologic diversity within a C. pneumoniae population
    • ā€¦
    corecore