8 research outputs found
Analysis of chronic aortic regurgitation by 2D and 3D echocardiography and cardiac MRI
Purpose: The study compares the feasibility of the quantitative volumetric and semi-quantitative approach for quantification of chronic aortic regurgitation (AR) using different imaging modalities.
Methods: Left ventricular (LV) volumes, regurgitant volumes (RVol) and regurgitant fractions (RF) were assessed retrospectively by 2D, 3D echocardiography and cMRI in 55 chronic AR patients. Semi-quantitative parameters were assessed by 2D echocardiography.
Results: 22 (40%) patients had mild, 25 (46%) moderate and 8 (14%) severe AR. The quantitative volumetric approach was feasible using 2D, 3D echocardiography and cMRI, whereas the feasibility of semi-quantitative parameters varied considerably. LV volume (LVEDV, LVESV, SVtot) analyses showed good correlations between the different imaging modalities, although significantly increased LV volumes were assessed by cMRI. RVol was significantly different between 2D/3D echocardiography and 2D echocardiography/cMRI but was not significantly different between 3D echocardiography/cMRI. RF was not statistically different between 2D echocardiography/cMRI and 3D echocardiography/cMRI showing poor correlations (r < 0.5) between the different imaging modalities. For AR grading by RF, moderate agreement was observed between 2D/3D echocardiography and 2D echocardiography/cMRI and good agreement was observed between 3D echocardiography/cMRI.
Conclusion: Semi-quantitative parameters are difficult to determine by 2D echocardiography in clinical routine. The quantitative volumetric RF assessment seems to be feasible and can be discussed as an alternative approach in chronic AR. However, RVol and RF did not correlate well between the different imaging modalities. The best agreement for grading of AR severity by RF was observed between 3D echocardiography and cMRI. LV volumes can be verified by different approaches and different imaging modalities
A comparative description of the mesosomal musculature in Sphecidae and Ampulicidae (Hymenoptera, Apoidea) using 3D techniques
Conflicting hypotheses about the relationships among the major lineages of aculeate Hymenoptera clearly show the necessity of detailed comparative morphological studies. Using micro-computed tomography and 3D reconstructions, the skeletal musculature of the meso- and metathorax and the first and second abdominal segment in Apoidea are described. Females of Sceliphron destillatorium, Sphex (Fernaldina) lucae (both Sphecidae), and Ampulex compressa (Ampulicidae) were examined. The morphological terminology provided by the Hymenoptera Anatomy Ontology is used. Up to 42 muscles were found. The three species differ in certain numerical and structural aspects. Ampulicidae differs significantly from Sphecidae in the metathorax and the anterior abdomen. The metapleural apodeme and paracoxal ridge are weakly developed in Ampulicidae, which affect some muscular structures. Furthermore, the muscles that insert on the coxae and trochanters are broader and longer in Ampulicidae. A conspicuous characteristic of Sphecidae is the absence of the metaphragma. Overall, we identified four hitherto unrecognized muscles. Our work suggests additional investigations on structures discussed in this paper
Analysis of chronic aortic regurgitation by 2D and 3D echocardiography and cardiac MRI
Purpose: The study compares the feasibility of the quantitative volumetric and semi-quantitative approach for quantification of chronic aortic regurgitation (AR) using different imaging modalities.
Methods: Left ventricular (LV) volumes, regurgitant volumes (RVol) and regurgitant fractions (RF) were assessed retrospectively by 2D, 3D echocardiography and cMRI in 55 chronic AR patients. Semi-quantitative parameters were assessed by 2D echocardiography.
Results: 22 (40%) patients had mild, 25 (46%) moderate and 8 (14%) severe AR. The quantitative volumetric approach was feasible using 2D, 3D echocardiography and cMRI, whereas the feasibility of semi-quantitative parameters varied considerably. LV volume (LVEDV, LVESV, SVtot) analyses showed good correlations between the different imaging modalities, although significantly increased LV volumes were assessed by cMRI. RVol was significantly different between 2D/3D echocardiography and 2D echocardiography/cMRI but was not significantly different between 3D echocardiography/cMRI. RF was not statistically different between 2D echocardiography/cMRI and 3D echocardiography/cMRI showing poor correlations (r < 0.5) between the different imaging modalities. For AR grading by RF, moderate agreement was observed between 2D/3D echocardiography and 2D echocardiography/cMRI and good agreement was observed between 3D echocardiography/cMRI.
Conclusion: Semi-quantitative parameters are difficult to determine by 2D echocardiography in clinical routine. The quantitative volumetric RF assessment seems to be feasible and can be discussed as an alternative approach in chronic AR. However, RVol and RF did not correlate well between the different imaging modalities. The best agreement for grading of AR severity by RF was observed between 3D echocardiography and cMRI. LV volumes can be verified by different approaches and different imaging modalities
Migratory and anti-fibrotic programmes define the regenerative potential of human cardiac progenitors
Heart regeneration is an unmet clinical need, hampered by limited renewal of adult cardiomyocytes and fibrotic scarring. Pluripotent stem cell-based strategies are emerging, but unravelling cellular dynamics of host-graft crosstalk remains elusive. Here, by combining lineage tracing and single-cell transcriptomics in injured non-human primate heart biomimics, we uncover the coordinated action modes of human progenitor-mediated muscle repair. Chemoattraction via CXCL12/CXCR4 directs cellular migration to injury sites. Activated fibroblast repulsion targets fibrosis by SLIT2/ROBO1 guidance in organizing cytoskeletal dynamics. Ultimately, differentiation and electromechanical integration lead to functional restoration of damaged heart muscle. In vivo transplantation into acutely and chronically injured porcine hearts illustrated CXCR4-dependent homing, de novo formation of heart muscle, scar-volume reduction and prevention of heart failure progression. Concurrent endothelial differentiation contributed to graft neovascularization. Our study demonstrates that inherent developmental programmes within cardiac progenitors are sequentially activated in disease, enabling the cells to sense and counteract acute and chronic injury. In this study, the authors report that pluripotent stem cell-derived ventricular progenitors target loss of myocardium and fibrotic scarring to promote heart regeneration, thus offering new potential therapeutic strategies for heart injury.Funding Agencies|European Research Council (ERC) under the European Union [743225, 788381, 101021043]; German Research Foundation, Transregio Research Unit 152; German Research Foundation, Transregio Research Unit 267; Swedish Research Council Distinguish Professor Grant; German Centre for Cardiovascular Research (DZHK)</p