1,317 research outputs found
Spectrophotometry of nearby field galaxies: the data
We have obtained integrated and nuclear spectra, as well as U, B, R surface
photometry, for a representative sample of 196 nearby galaxies. These galaxies
span the entire Hubble sequence in morphological type, as well as a wide range
of luminosities (M_B=-14 to -22). Here we present the spectrophotometry for
these galaxies. The selection of the sample and the U, B, R surface photometry
is described in a companion paper (Paper I). Our goals for the project include
measuring the current star formation rates and metallicities of these galaxies,
and elucidating their star formation histories, as a function of luminosity and
morphology. We thereby extend the work of Kennicutt (1992a) to lower luminosity
systems. We anticipate that our study will be useful as a benchmark for studies
of galaxies at high redshift.
We describe the observing, data reduction and calibration techniques, and
demonstrate that our spectrophotometry agrees well with that of Kennicutt. The
spectra span the range 3550--7250 A at a resolution (FWHM) of ~6 A, and have an
overall relative spectrophotometric accuracy of +/- 6 per cent. We present a
spectrophotometric atlas of integrated and nuclear rest-frame spectra, as well
as tables of equivalent widths and synthetic colors.
We study the correlations of galaxy properties determined from the spectra
and images. Our findings include: (1) galaxies of a given morphological class
display a wide range of continuum shapes and emission line strengths if a broad
range of luminosities are considered, (2) emission line strengths tend to in-
crease and continua tend to get bluer as the luminosity decreases, and (3) the
scatter on the general correlation between nuclear and integrated H_alpha
emission line strengths is large.Comment: Accepted for publication in ApJS (scheduled for Vol.127, 2000 March);
63 pages, LateX, 9 figures and 6 tables included, a spectrophotometric atlas
is provided as GIF images, fig 1 as a JPEG image, in a single tar-file; a
full 600 dpi version is available at http://www.astro.rug.nl/~nfgs
Recommended from our members
Validation of an instrument for mathematics enhancement teaching efficacy of Pacific Northwest agricultural educators
Teacher efficacy continues to be an important area of study in educational research. This study tested an instrument designed to assess the perceived efficacy of agricultural education teachers when engaged in lessons involving mathematics instruction. The study population of Oregon and Washington agricultural educators utilized in the validation of the instrument revealed important demographic findings and specific results related to teacher efficacy for the study population. An instrument was developed from the assimilation of three scales previously used and validated in efficacy research. Participants' mathematics teaching efficacy was assessed using a portion of the Mathematics Teaching Efficacy Beliefs Instrument (MTEBI), and personal mathematics efficacy was evaluated by the mathematics self-belief instrument which was derived from the Betz and Hackett's Mathematics Self-Efficacy Scale. The final scale, the Teachers' Sense of Efficacy Scale (TSES) created by Tschannen-Moran and Woolfolk Hoy, examined perceived personal teaching
efficacy. Structural equation modeling was used as the statistical analyses tool to validate the instrument and examine correlations between efficacy constructs used to determine potential professional development needs of the survey population. As part of the data required for validation of the Mathematics Enhancement Teaching Efficacy instrument, demographic information defining the population of Oregon and Washington agricultural educators was obtained and reported. A hypothetical model derived from teacher efficacy literature was found to be an acceptable model to verify construct validity and determine strength of correlations between the scales that defined the instrument. The instrument produced an alpha coefficient of .905 for reliability. Both exploratory and confirmatory factor analyses were used to verify construct and discriminate validity. Specifics results related to the survey population of agricultural educators concluded that personal mathematics efficacy has a stronger correlation with mathematics teaching efficacy than personal teaching efficacy of teachers for this population. The implications of such findings suggest that professional development and pre-service preparation should be more focused on mathematics content knowledge rather than pedagogical knowledge when the objective is to enhance mathematics in interdisciplinary lessons
CNN Architectures for Large-Scale Audio Classification
Convolutional Neural Networks (CNNs) have proven very effective in image
classification and show promise for audio. We use various CNN architectures to
classify the soundtracks of a dataset of 70M training videos (5.24 million
hours) with 30,871 video-level labels. We examine fully connected Deep Neural
Networks (DNNs), AlexNet [1], VGG [2], Inception [3], and ResNet [4]. We
investigate varying the size of both training set and label vocabulary, finding
that analogs of the CNNs used in image classification do well on our audio
classification task, and larger training and label sets help up to a point. A
model using embeddings from these classifiers does much better than raw
features on the Audio Set [5] Acoustic Event Detection (AED) classification
task.Comment: Accepted for publication at ICASSP 2017 Changes: Added definitions of
mAP, AUC, and d-prime. Updated mAP/AUC/d-prime numbers for Audio Set based on
changes of latest Audio Set revision. Changed wording to fit 4 page limit
with new addition
Multispecies virial expansions
We study the virial expansion of mixtures of countably many different types of particles. The main tool is the Lagrange–Good inversion formula, which has other applications such as counting coloured trees or studying probability generating functions in multi-type branching processes. We prove that the virial expansion converges absolutely in a domain of small densities. In addition, we establish that the virial coefficients can be expressed in terms of two-connected graphs
The Incidence of Highly-Obscured Star-Forming Regions in SINGS Galaxies
Using the new capabilities of the Spitzer Space Telescope and extensive
multiwavelength data from the Spitzer Infrared Nearby Galaxies Survey (SINGS),
it is now possible to study the infrared properties of star formation in nearby
galaxies down to scales equivalent to large HII regions. We are therefore able
to determine what fraction of large, infrared-selected star-forming regions in
normal galaxies are highly obscured and address how much of the star formation
we miss by relying solely on the optical portion of the spectrum. Employing a
new empirical method for deriving attenuations of infrared-selected
star-forming regions we investigate the statistics of obscured star formation
on 500pc scales in a sample of 38 nearby galaxies. We find that the median
attenuation is 1.4 magnitudes in H-alpha and that there is no evidence for a
substantial sub-population of uniformly highly-obscured star-forming regions.
The regions in the highly-obscured tail of the attenuation distribution
(A_H-alpha > 3) make up only ~4% of the sample of nearly 1800 regions, though
very embedded infrared sources on the much smaller scales and lower
luminosities of compact and ultracompact HII regions are almost certainly
present in greater numbers. The highly-obscured cases in our sample are
generally the bright, central regions of galaxies with high overall attenuation
but are not otherwise remarkable. We also find that a majority of the galaxies
show decreasing radial trends in H-alpha attenuation. The small fraction of
highly-obscured regions seen in this sample of normal, star-forming galaxies
suggests that on 500pc scales the timescale for significant dispersal or break
up of nearby, optically-thick dust clouds is short relative to the lifetime of
a typical star-forming region.Comment: Accepted for publication in ApJ; emulateapj style, 30 pages, 18
figures (compressed versions), 3 table
A fluorescence anisotropy assay to discover and characterize ligands targeting the maytansine site of tubulin.
Microtubule-targeting agents (MTAs) like taxol and vinblastine are among the most successful chemotherapeutic drugs against cancer. Here, we describe a fluorescence anisotropy-based assay that specifically probes for ligands targeting the recently discovered maytansine site of tubulin. Using this assay, we have determined the dissociation constants of known maytansine site ligands, including the pharmacologically active degradation product of the clinical antibody-drug conjugate trastuzumab emtansine. In addition, we discovered that the two natural products spongistatin-1 and disorazole Z with established cellular potency bind to the maytansine site on β-tubulin. The high-resolution crystal structures of spongistatin-1 and disorazole Z in complex with tubulin allowed the definition of an additional sub-site adjacent to the pocket shared by all maytansine-site ligands, which could be exploitable as a distinct, separate target site for small molecules. Our study provides a basis for the discovery and development of next-generation MTAs for the treatment of cancer
Seawater softening of suture zones inhibits fracture propagation in Antarctic ice shelves
Suture zones are abundant on Antarctic ice shelves and widely observed to impede fracture propagation, greatly enhancing ice-shelf stability. Using seismic and radar observations on the Larsen C Ice Shelf of the Antarctic Peninsula, we confirm that such zones are highly heterogeneous, consisting of multiple meteoric and marine ice bodies of diverse provenance fused together. Here we demonstrate that fracture detainment is predominantly controlled by enhanced seawater content in suture zones, rather than by enhanced temperature as previously thought. We show that interstitial seawater can reduce fracture-driving stress by orders of magnitude, promoting both viscous relaxation and the development of micro cracks, the incidence of which scales inversely with stress intensity. We show how simple analysis of viscous buckles in ice-penetrating radar data can quantify the seawater content of suture zones and their modification of the ice-shelf’s stress regime. By limiting fracture, enhancing stability and restraining continental ice discharge into the ocean, suture zones act as vital regulators of Antarctic mass balance
Statistical validation of megavariate effects in ASCA
This is an Open Access article distributed under the terms of the Creative Commons Attribution Licens
Ab-initio structural, elastic, and vibrational properties of carbon nanotubes
A study based on ab initio calculations is presented on the estructural,
elastic, and vibrational properties of single-wall carbon nanotubes with
different radii and chiralities. We use SIESTA, an implementation of
pseudopotential-density-functional theory which allows calculations on systems
with a large number of atoms per cell. Different quantities like bond
distances, Young moduli, Poisson ratio and the frequencies of different phonon
branches are monitored versus tube radius. The validity of expectations based
on graphite is explored down to small radii, where some deviations appear
related to the curvature effects. For the phonon spectra, the results are
compared with the predictions of the simple zone-folding approximation. Except
for the known defficiencies of this approximation in the low-frequency
vibrational regions, it offers quite accurate results, even for relatively
small radii.Comment: 13 pages, 7 figures, submitted to Phys. Rev. B (11 Nov. 98
- …