3,780 research outputs found

    Ligand Discrimination in Myoglobin from Linear-Scaling DFT+U

    Full text link
    Myoglobin modulates the binding of diatomic molecules to its heme group via hydrogen-bonding and steric interactions with neighboring residues, and is an important benchmark for computational studies of biomolecules. We have performed calculations on the heme binding site and a significant proportion of the protein environment (more than 1000 atoms) using linear-scaling density functional theory and the DFT+U method to correct for self-interaction errors associated with localized 3d states. We confirm both the hydrogen-bonding nature of the discrimination effect (3.6 kcal/mol) and assumptions that the relative strain energy stored in the protein is low (less than 1 kcal/mol). Our calculations significantly widen the scope for tackling problems in drug design and enzymology, especially in cases where electron localization, allostery or long-ranged polarization influence ligand binding and reaction.Comment: 15 pages, 3 figures. Supplementary material 8 pages, 3 figures. This version matches that accepted for J. Phys. Chem. Lett. on 10th May 201

    The genomics of neonatal abstinence syndrome

    Get PDF
    Significant variability has been observed in the development and severity of neonatal abstinence syndrome (NAS) among neonates exposed to prenatal opioids. Since maternal opioid dose does not appear to correlate directly with neonatal outcome, maternal, placental, and fetal genomic variants may play important roles in NAS. Previous studies in small cohorts have demonstrated associations of variants in maternal and infant genes that encode the μ-opioid receptor (OPRM1), catechol-O-methyltransferase (COMT), and prepronociceptin (PNOC) with a shorter length of hospital stay and less need for treatment in neonates exposed to opioids in utero. Consistently falling genomic sequencing costs and computational approaches to predict variant function will permit unbiased discovery of genomic variants and gene pathways associated with differences in maternal and fetal opioid pharmacokinetics and pharmacodynamics and with placental opioid transport and metabolism. Discovery of pathogenic variants should permit better delineation of the risk of developing more severe forms of NAS. This review provides a summary of the current role of genomic factors in the development of NAS and suggests strategies for further genomic discovery

    Renormalization of myoglobin-ligand binding energetics by quantum many-body effects

    Get PDF
    We carry out a first-principles atomistic study of the electronic mechanisms of ligand binding and discrimination in the myoglobin protein. Electronic correlation effects are taken into account using one of the most advanced methods currently available, namely a linear-scaling density functional theory (DFT) approach wherein the treatment of localized iron 3d electrons is further refined using dynamical mean-field theory (DMFT). This combination of methods explicitly accounts for dynamical and multi-reference quantum physics, such as valence and spin fluctuations, of the 3d electrons, whilst treating a significant proportion of the protein (more than 1000 atoms) with density functional theory. The computed electronic structure of the myoglobin complexes and the nature of the Fe-O2 bonding are validated against experimental spectroscopic observables. We elucidate and solve a long standing problem related to the quantum-mechanical description of the respiration process, namely that DFT calculations predict a strong imbalance between O2 and CO binding, favoring the latter to an unphysically large extent. We show that the explicit inclusion of many body-effects induced by the Hund's coupling mechanism results in the correct prediction of similar binding energies for oxy- and carbonmonoxymyoglobin.Comment: 7 pages, 5 figures. Accepted for publication in the Proceedings of the National Academy of Sciences of the United States of America (2014). For the published article see http://www.pnas.org/content/early/2014/04/09/1322966111.abstrac

    A Note on the Use of Mixture Models for Individual Prediction

    Get PDF
    Mixture models capture heterogeneity in data by decomposing the population into latent subgroups, each of which is governed by its own subgroup-specific set of parameters. Despite the flexibility and widespread use of these models, most applications have focused solely on making inferences for whole or sub-populations, rather than individual cases. The current article presents a general framework for computing marginal and conditional predicted values for individuals using mixture model results. These predicted values can be used to characterize covariate effects, examine the fit of the model for specific individuals, or forecast future observations from previous ones. Two empirical examples are provided to demonstrate the usefulness of individual predicted values in applications of mixture models. The first example examines the relative timing of initiation of substance use using a multiple event process survival mixture model whereas the second example evaluates changes in depressive symptoms over adolescence using a growth mixture model

    Subspace confinement : how good is your qubit?

    Get PDF
    The basic operating element of standard quantum computation is the qubit, an isolated two-level system that can be accurately controlled, initialized and measured. However, the majority of proposed physical architectures for quantum computation are built from systems that contain much more complicated Hilbert space structures. Hence, defining a qubit requires the identification of an appropriate controllable two-dimensional sub-system. This prompts the obvious question of how well a qubit, thus defined, is confined to this subspace, and whether we can experimentally quantify the potential leakage into states outside the qubit subspace. We demonstrate how subspace leakage can be characterized using minimal theoretical assumptions by examining the Fourier spectrum of the oscillation experiment

    Development of a Classical Force Field for the Oxidised Si Surface: Application to Hydrophilic Wafer Bonding

    Full text link
    We have developed a classical two- and three-body interaction potential to simulate the hydroxylated, natively oxidised Si surface in contact with water solutions, based on the combination and extension of the Stillinger-Weber potential and of a potential originally developed to simulate SiO2 polymorphs. The potential parameters are chosen to reproduce the structure, charge distribution, tensile surface stress and interactions with single water molecules of a natively oxidised Si surface model previously obtained by means of accurate density functional theory simulations. We have applied the potential to the case of hydrophilic silicon wafer bonding at room temperature, revealing maximum room temperature work of adhesion values for natively oxidised and amorphous silica surfaces of 97 mJ/m2 and 90mJ/m2, respectively, at a water adsorption coverage of approximately 1 monolayer. The difference arises from the stronger interaction of the natively oxidised surface with liquid water, resulting in a higher heat of immersion (203 mJ/m2 vs. 166 mJ/m2), and may be explained in terms of the more pronounced water structuring close to the surface in alternating layers of larger and smaller density with respect to the liquid bulk. The computed force-displacement bonding curves may be a useful input for cohesive zone models where both the topographic details of the surfaces and the dependence of the attractive force on the initial surface separation and wetting can be taken into account
    • …
    corecore