254 research outputs found

    GP0.4 from bacteriophage T7: in silico characterisation of its structure and interaction with E. coli FtsZ.

    Get PDF
    BackgroundProteins produced by bacteriophages can have potent antimicrobial activity. The study of phage-host interactions can therefore inform small molecule drug discovery by revealing and characterising new drug targets. Here we characterise in silico the predicted interaction of gene protein 0.4 (GP0.4) from the Escherichia coli (E. coli) phage T7 with E. coli filamenting temperature-sensitive mutant Z division protein (FtsZ). FtsZ is a tubulin homolog which plays a key role in bacterial cell division and that has been proposed as a drug target.ResultsUsing ab initio, fragment assembly structure modelling, we predicted the structure of GP0.4 with two programs. A structure similarity-based network was used to identify a U-shaped helix-turn-helix candidate fold as being favoured. ClusPro was used to dock this structure prediction to a homology model of E. coli FtsZ resulting in a favourable predicted interaction mode. Alternative docking methods supported the proposed mode which offered an immediate explanation for the anti-filamenting activity of GP0.4. Importantly, further strong support derived from a previously characterised insertion mutation, known to abolish GP0.4 activity, that is positioned in close proximity to the proposed GP0.4/FtsZ interface.ConclusionsThe mode of interaction predicted by bioinformatics techniques strongly suggests a mechanism through which GP0.4 inhibits FtsZ and further establishes the latter's druggable intrafilament interface as a potential drug target

    Structure- and context-based analysis of the GxGYxYP family reveals a new putative class of glycoside hydrolase.

    Get PDF
    BackgroundGut microbiome metagenomics has revealed many protein families and domains found largely or exclusively in that environment. Proteins containing the GxGYxYP domain are over-represented in the gut microbiota, and are found in Polysaccharide Utilization Loci in the gut symbiont Bacteroides thetaiotaomicron, suggesting their involvement in polysaccharide metabolism, but little else is known of the function of this domain.ResultsGenomic context and domain architecture analyses support a role for the GxGYxYP domain in carbohydrate metabolism. Sparse occurrences in eukaryotes are the result of lateral gene transfer. The structure of the GxGYxYP domain-containing protein encoded by the BT2193 locus reveals two structural domains, the first composed of three divergent repeats with no recognisable homology to previously solved structures, the second a more familiar seven-stranded β/α barrel. Structure-based analyses including conservation mapping localise a presumed functional site to a cleft between the two domains of BT2193. Matching to a catalytic site template from a GH9 cellulase and other analyses point to a putative catalytic triad composed of Glu272, Asp331 and Asp333.ConclusionsWe suggest that GxGYxYP-containing proteins constitute a novel glycoside hydrolase family of as yet unknown specificity

    The centrosomal deubiquitylase USP21 regulates Gli1 transcriptional activity and stability

    Get PDF
    USP21 is a centrosome-associated deubiquitylase (DUB) that has been implicated in the formation of primary cilia - crucial organelles for the regulation of the Hedgehog (Hh) signaling pathway in vertebrates. Here, we identify KCTD6 - a cullin-3 E3-ligase substrate adapter that has been previously linked to Hh signaling - as well as Gli1, the key transcription factor responsible for Hh signal amplification, as new interacting partners of USP21. We identify a cryptic structured protein interaction domain in KCTD6, which is predicted to have a similar fold to Smr domains. Importantly, we show that both depletion and overexpression of catalytically active USP21 suppress Gli1-dependent transcription. Gli proteins are negatively regulated through protein kinase A (PKA)-dependent phosphorylation. We provide evidence that USP21 recruits and stabilises Gli1 at the centrosome where it promotes its phosphorylation by PKA. By revealing an intriguing functional pairing between a spatially restricted deubiquitylase and a kinase, our study highlights the centrosome as an important hub for signal coordination

    To split or not to split: CASP15 targets and their processing into tertiary structure evaluation units

    Get PDF
    Processing of CASP15 targets into evaluation units (EUs) and assigning them to evolutionary-based prediction classes is presented in this study. The targets were first split into structural domains based on compactness and similarity to other proteins. Models were then evaluated against these domains and their combinations. The domains were joined into larger EUs if predictors' performance on the combined units was similar to that on individual domains. Alternatively, if most predictors performed better on the individual domains, then they were retained as EUs. As a result, 112 evaluation units were created from 77 tertiary structure prediction targets. The EUs were assigned to four prediction classes roughly corresponding to target difficulty categories in previous CASPs: TBM (template-based modeling, easy or hard), FM (free modeling), and the TBM/FM overlap category. More than a third of CASP15 EUs were attributed to the historically most challenging FM class, where homology or structural analogy to proteins of known fold cannot be detected

    Structural genomics analysis of uncharacterized protein families overrepresented in human gut bacteria identifies a novel glycoside hydrolase.

    Get PDF
    BackgroundBacteroides spp. form a significant part of our gut microbiome and are well known for optimized metabolism of diverse polysaccharides. Initial analysis of the archetypal Bacteroides thetaiotaomicron genome identified 172 glycosyl hydrolases and a large number of uncharacterized proteins associated with polysaccharide metabolism.ResultsBT_1012 from Bacteroides thetaiotaomicron VPI-5482 is a protein of unknown function and a member of a large protein family consisting entirely of uncharacterized proteins. Initial sequence analysis predicted that this protein has two domains, one on the N- and one on the C-terminal. A PSI-BLAST search found over 150 full length and over 90 half size homologs consisting only of the N-terminal domain. The experimentally determined three-dimensional structure of the BT_1012 protein confirms its two-domain architecture and structural analysis of both domains suggests their specific functions. The N-terminal domain is a putative catalytic domain with significant similarity to known glycoside hydrolases, the C-terminal domain has a beta-sandwich fold typically found in C-terminal domains of other glycosyl hydrolases, however these domains are typically involved in substrate binding. We describe the structure of the BT_1012 protein and discuss its sequence-structure relationship and their possible functional implications.ConclusionsStructural and sequence analyses of the BT_1012 protein identifies it as a glycosyl hydrolase, expanding an already impressive catalog of enzymes involved in polysaccharide metabolism in Bacteroides spp. Based on this we have renamed the Pfam families representing the two domains found in the BT_1012 protein, PF13204 and PF12904, as putative glycoside hydrolase and glycoside hydrolase-associated C-terminal domain respectively

    Helical ensembles outperform ideal helices in molecular replacement

    Get PDF
    The conventional approach in molecular replacement (MR) is the use of a related structure as a search model. However, this is not always possible as the availability of such structures can be scarce for poorly characterised families of proteins. In these cases, alternative approaches can be explored, such as the use of small ideal fragments that share high albeit local structural similarity with the unknown protein. Earlier versions of AMPLE enabled the trialling of a library of ideal helices, which worked well for largely helical proteins at suitable resolution. Here we explore the performance of libraries of helical ensembles created by clustering helical segments. The impacts of different B-factor treatments and different degrees of structural heterogeneity are explored. We observed a 30% increase in the number of solutions obtained by AMPLE when using this new set of ensembles compared to performance with ideal helices. The boost of performance was notable across three different folds: transmembrane, globular and coiled-coil structures. Furthermore, the increased effectiveness of these ensembles was coupled to a reduction of the time required by AMPLE to reach a solution. AMPLE users can now take full advantage of this new library of search models by activating the “helical ensembles” mode

    Transcriptomic Analysis of Shiga-Toxigenic Bacteriophage Carriage Reveals a Profound Regulatory Effect on Acid Resistance in Escherichia coli

    Get PDF
    Shiga-toxigenic bacteriophages are converting lambdoid phages that impart the ability to produce Shiga toxin to their hosts. Little is known about the function of most of the genes carried by these phages or the impact that lysogeny has on the Escherichia coli host. Here we use next-generation sequencing to compare the transcriptomes of E. coli strains infected with an Stx phage, before and after triggering of the bacterial SOS response that initiates the lytic cycle of the phage. We were able to discriminate between bacteriophage genes expressed in the lysogenic and lytic cycles, and we describe transcriptional changes that occur in the bacterial host as a consequence of Stx phage carriage. Having identified upregulation of the glutamic acid decarboxylase (GAD) operon, confirmed by reverse transcription-quantitative PCR (RT-qPCR), we used phenotypic assays to establish the ability of the Stx prophage to confer a greater acid resistance phenotype on the E. coli host. Known phage regulators were overexpressed in E. coli, and the acid resistance of the recombinant strains was tested. The phage-encoded transcriptional regulator CII was identified as the controller of the acid response in the lysogen. Infection of an E. coli O157 strain, from which integrated Stx prophages were previously removed, showed increased acid resistance following infection with a nontoxigenic phage, ϕ24B. In addition to demonstrating this link between Stx phage carriage and E. coli acid resistance, with its implications for survival postingestion, the data set provides a number of other potential insights into the impact of lambdoid phage carriage on the biology of E. coli
    corecore