7 research outputs found

    Anticancer Molecules from Catharanthus roseus

    Get PDF
    Catharanthus roseus is an important medicinal plant found in various parts of the world and the bioactive compound has been extracted and used as anti-cancer agent to treat the cancer over decades. However, the extraction of bioactive compound also results in the generation of large quantities of pollution with wasted solvents. Toxic pollution occurs when synthetic chemicals are discharged or natural chemicals accumulate to toxic levels in the environment, causing reductions in wildlife numbers, degrading ecosystem functions and threatening human health. This review covers the extraction and phytochemical obtained leading to chemical compounds related to anti-cancer property of C. roseus. Additionally, recent advances of using biological cell cultures were also addressed. Thus, this work can be used for further investigation of C. roseus to be undertaken in future for its anti-cancer property further development and efficient production in drug industr

    Exopolysaccharides producing bacteria for the amelioration of drought stress in wheat

    Get PDF
    This research was designed to elucidate the role of exopolysaccharides (EPS) producing bacterial strains for the amelioration of drought stress in wheat. Bacterial strains were isolated from a farmer’s field in the arid region of Pakistan. Out of 24 isolated stains, two bacterial strains, Bacillus subtilis (Accession No. MT742976) and Azospirillum brasilense (Accession No. MT742977) were selected, based on their ability to produce EPS and withstand drought stress. Both bacterial strains produced a good amount of EPS and osmolytes and exhibited drought tolerance individually, however, a combination of these strains produced higher amounts of EPS (sugar 6976 µg/g, 731.5 µg/g protein, and 1.1 mg/g uronic acid) and osmolytes (proline 4.4 µg/mg and sugar 79 µg/mg) and significantly changed the level of stress-induced phytohormones (61%, 49% and 30% decrease in Indole Acetic Acid (IAA), Gibberellic Acid (GA), and Cytokinin (CK)) respectively under stress, but an increase of 27.3% in Abscisic acid (ABA) concentration was observed. When inoculated, the combination of these strains improved seed germination, seedling vigor index, and promptness index by 18.2%, 23.7%, and 61.5% respectively under osmotic stress (20% polyethylene glycol, PEG6000). They also promoted plant growth in a pot experiment with an increase of 42.9%, 29.8%, and 33.7% in shoot length, root length, and leaf area, respectively. Physiological attributes of plants were also improved by bacterial inoculation showing an increase of 39.8%, 61.5%, and 45% in chlorophyll a, chlorophyll b, and carotenoid content respectively, as compared to control. Inoculations of bacterial strains also increased the production of osmolytes such asproline, amino acid, sugar, and protein by 30%, 23%, 68%, and 21.7% respectively. Co-inoculation of these strains enhanced the production of antioxidant enzymes such as superoxide dismutase (SOD) by 35.1%, catalase (CAT) by 77.4%, and peroxidase (POD) by 40.7%. Findings of the present research demonstrated that EPS, osmolyte, stress hormones, and antioxidant enzyme-producing bacterial strains impart drought tolerance in wheat and improve its growth, morphological attributes, physiological parameters, osmolytes production, and increase antioxidant enzymes

    Statistical medium optimization for enhancing high biomass production of Lactobacillus reuteri using response surface methodology

    No full text
    The high cell mass production of probiotic lactic acid bacteria using low-cost substrate is critical for successful large-scale production. Lactobacillus reuteri DSM20016T is a heterofermentative lactic acid bacterium that is well recognized for its probiotic properties. Defining an optimal cultivation medium could enhance the yield and reduce the production cost as well. In this paper, seven media reported in the literature were reviewed and assessed for their capability to be used as a growth medium of L. reuteri. The most appropriate cultivation medium for L. reuteri, which has reached the best cell mass yield, annotated M5, was selected. The selected medium from the screening stage was optimized using response surface methodology (RSM). The optimized medium composition was (gL-1): sucrose (55), yeast extract (44), sodium acetate (2.6), tri-ammonium citrate (0.2), KH2PO4 (0.2), Mg SO4 (0.2), Mn SO4 (0.05), and NaCl (0.01). The comparative study showed 28% increase was achieved in the optimized medium with the yield of 3.31 gL-1 compared to the cell mass production in the unoptimized medium that was 2.59 gL-1. A significant cell mass growth rate accompanied the achieved increment. Finally, an optimum medium was proposed for enhanced cell mass production

    DEVELOPMENT OF CULTIVATION MEDIUM FOR HIGH YIELD KEFIRAN PRODUCTION BY LACTOBACILLUS KEFIRANOFACIENS

    Get PDF
    Objective: Kefiran is one of the important microbial polysaccharides of many pharmaceutical and nutraceutical applications. It shows many potential medical applications as antimicrobial and immunomodulatory compound. The present work focuses on medium optimization for kefiran production using the standard strain Lactobacillus kefiranofaciens in submerged cultivation system.Methods: Different types and concentrations of key nutrients such as carbon sources (glucose, mannitol, sucrose, lactose), nitrogen sources (yeast extract, peptone, meat extract, casein hydrolysate) and inorganic phosphate were evaluated to select the most appropriate nutrients and concentrations for kefiran production. Growth curve kinetics were also carried out to compare between the kinetics of cell growth and kefiran production in medium before and after optimization.Results: It was clearly observed that type and concentration of carbon and nitrogen sources showed the significant effect on kefiran production. On the other hand, phosphate showed less effect on this process. The maximal kefiran production of about 1.25 g/l was obtained in medium composed of (g/l): lactose, 50.0; yeast extract, 12.0; KH2PO4, 0.25; sodium acetate, 5.0; Triammonium citrate, 2.0; MgSO4.7H2O, 0.2; MnSO4.5H2O, 0.05.Conclusion: The new medium formulation increased the kefiran production from 0.23 g/l upto 1.29 g/l concomitant with the reduction of production time from 72 to 60 h.Â

    Development of cultivation medium for high yield kefiran production by Lactobacillus Kefiranofaciens

    Get PDF
    Objective: Kefiran is one of the important microbial polysaccharides of many pharmaceutical and nutraceutical applications. It shows many potential medical applications as antimicrobial and immunomodulatory compound. The present work focuses on medium optimization for kefiran production using the standard strain Lactobacillus kefiranofaciens in submerged cultivation system. Methods: Different types and concentrations of key nutrients such as carbon sources (glucose, mannitol, sucrose, lactose), nitrogen sources (yeast extract, peptone, meat extract, casein hydrolysate) and inorganic phosphate were evaluated to select the most appropriate nutrients and concentrations for kefiran production. Growth curve kinetics were also carried out to compare between the kinetics of cell growth and kefiran production in medium before and after optimization. Results: It was clearly observed that type and concentration of carbon and nitrogen sources showed the significant effect on kefiran production. On the other hand, phosphate showed less effect on this process. The maximal kefiran production of about 1.25 g/l was obtained in medium composed of (g/l): lactose, 50.0; yeast extract, 12.0; KH2PO4, 0.25; sodium acetate, 5.0; Triammonium citrate, 2.0; MgSO4.7H2O, 0.2; MnSO4.5H2O, 0.05. Conclusion: The new medium formulation increased the kefiran production from 0.23 g/l upto 1.29 g/l concomitant with the reduction of production time from 72 to 60 h

    Efficient kefiran production by Lactobacillus kefiranofaciens ATCC 43761 in submerged cultivation: Influence of osmotic stress and nonionic surfactants, and potential bioactivities

    Get PDF
    Kefiran is a water soluble polysaccharide produced by Lactobacillus kefiranofaciens ATCC 43761. It has wide potential applications in food, pharmaceutical and nutraceutical industries. To the best of our knowledge, there have been no previous reports on the effect of osmotic stress and ionic surfactants on kefiran production by L. kefiranofaciens ATCC 43761. Accordingly, the current work aimed at optimizing kefiran production as affected by osmotic stress and nonionic surfactants in submerged cultivation system. Afterwards, the work was extended to investigate cytotoxic as well as antioxidant potentials of kefiran. Firstly, different osmolarities, different ionic surfactants (Triton X-100, Tween 20, Tween 80) as well as their concentrations and addition time were evaluated. The kinetics of cell growth and kefiran production were evaluated before and after the addition of surfactants. Results clearly demonstrated that osmotic stress and surfactant addition had a stimulatory effect on kefiran production. Using the optimal medium osmolality, 550 mOsmol.kg−1, kefiran production was enhanced from 1.29 to about 1.38 g.L−1. Furthermore, Triton X-100 was found to be the best surfactant stimulating kefiran production when added at a concentration of 1.0 g.L−1 at the onset of cultivation process (0 h). This increased kefiran production from 1.38 g.L−1 to 1.62 g.L−1. To summarize, the maximal kefiran production can be enhanced using 550 mOsmol.kg−1 and by adding 1.0 g.L−1 of Triton X-100 at 0 h. The new optimized medium showed an increase of about 25.6% in kefiran production (1.29 up to 1.62 g.L−1). After this step, the process was further optimized in 16-L stirred tank bioreactor. Maximal kefiran production reached 2.32 g.L−1 and 1.87 g.L−1 in bioreactor under control and un-controlled pH conditions, respectively, corresponding to 72.9 and 45.0% increase from the initial production titer, respectively. The produced kefiran exhibited promising anticancer activity against breast cancer (MCF-7) cells, with an IC50 value of 193.89 μg.mL−1. Also, kefiran showed 96.58% radical scavenging activity at 100 μg/mL, with an ED50 recorded of 12.29 ± 0.98 μg.mL−1
    corecore