158 research outputs found

    Phylogeography of the vector nematode Xiphinema index using mitochondrial and microsatellite markers highlights its Eastern origin closely linked to grapevine domestication.

    Get PDF
    The economic impact of the dagger nematode Xiphinema index is high in Western vineyards by transmitting the damaging Grapevine fanleaf virus. Our phylogeographical study based on mitochondrial sequences and microsatellite loci used more than 80 X. index representative samples collected from the Middle- and Near East, the Eastern-, Central- and Western Mediterranean, and the Western countries (Europe and the Americas). In this mainly (meiotic) parthenogenetic species, the mitochondrial marker CytB was first considered for comparison of X. index with the related amphimictic vector species X. diversicaudatum. Xiphinema index exhibits a significantly lower intraspecific molecular variability than X. diversicaudatum, in agreement with the respective reproduction modes of both nematodes. We then showed that CytB, concatenated with additional mitochondrial genes ATP6, ND4 and COI, display a robust phylogeographical pattern consisting in three clades grouping Eastern Mediterranean, Nearand Middle Eastern samples and a single clade grouping samples from Western Mediterranean, Europe and the Americas. The highest mitochondrial polymorphism is observed in one clade of Middle- and Near-East samples that overlaps the Transcaucasia and Southern Caspian Sea region from where grapevine has been presumably domesticated and that likely overlaps the nematode native area. East-to-west nematode dissemination appears to match that of its domesticated grapevine host during the Antiquity mainly by the Greeks and then the Romans. In Western Mediterranean, Europe and the Americas, two close and almost exclusive mitochondrial haplotypes were detected. The first haplotype, found in vineyards from the Southern Iberian Peninsula, Bordeaux and Provence, exhibits a high microsatellite polymorphism. By contrast, the second haplotype contains a single predominant microsatellite genotype surprisingly widespread in most Western countries. This is almost certainly due to its recent dispersal during the massive grapevine replants following the 19th century phylloxera crisis. Our data provide an improved knowledge of X. index diversity for future pest control strategies

    Ma Orthologous Genes in Prunus spp. Shed Light on a Noteworthy NBS-LRR Cluster Conferring Differential Resistance to Root-Knot Nematodes

    Get PDF
    Root-knot nematodes (RKNs) are considerable polyphagous pests that severely challenge plants worldwide and especially perennials. The specific genetic resistance of plants mainly relies on the NBS-LRR genes that are pivotal factors for pathogens control. In Prunus spp., the Ma plum and RMja almond genes possess different spectra for resistance to RKNs. While previous works based on the Ma gene allowed to clone it and to decipher its peculiar TIR-NBS-LRR (TNL) structure, we only knew that the RMja gene mapped on the same chromosome as Ma. We carried out a high-resolution mapping using an almond segregating F2 progeny of 1448 seedlings from resistant (R) and susceptible (S) parental accessions, to locate precisely RMja on the peach genome, the reference sequence for Prunus species. We showed that the RMja gene maps in the Ma resistance cluster and that the Ma ortholog is the best candidate for RMja. This co-localization is a crucial step that opens the way to unravel the molecular determinants involved in the resistance to RKNs. Then we sequenced both almond parental NGS genomes and aligned them onto the RKN susceptible reference peach genome. We produced a BAC library of the R parental accession and, from two overlapping BAC clones, we obtained a 336-kb sequence encompassing the RMja candidate region. Thus, we could benefit from three Ma orthologous regions to investigate their sequence polymorphism, respectively, within plum (complete R spectrum), almond (incomplete R spectrum) and peach (null R spectrum). We showed that the Ma TNL cluster has evolved orthologs with a unique conserved structure comprised of five repeated post-LRR (PL) domains, which contain most polymorphism. In addition to support the Ma and RMja orthologous relationship, our results suggest that the polymorphism contained in the PL sequences might underlie differential resistance interactions with RKNs and an original immune mechanism in woody perennials. Besides, our study illustrates how PL exon duplications and losses shape TNL structure and give rise to atypical PL domain repeats of yet unknown role

    A muscadine locus confers resistance to predominant species of grapevine root-knot nematodes (Meloidogyne spp.) including virulent populations

    Get PDF
    Root-knot nematodes (RKNs) Meloidogyne spp. are extremely polyphagous pests and four species severely affect grapevines throughout the world: M. arenaria, M. incognita, M. javanica and M. ethiopica. Californian populations of M. arenaria and M. incognita are reported to be virulent to widely used rootstocks and to the rootstock ‘Harmony’ in particular. Breeding RKNs-resistant grape rootstocks is a promising alternative to highly toxic nematicides. Muscadine (Vitis rotundifolia syn. Muscadinia rotundifolia) is a resistance (R) source with undercharacterised genetics. To this end, we used a segregating progeny between the RKN-resistant Vitis x Muscadinia accession ‘VRH8771’ from the muscadine source ‘NC184-4’ and the RKN-susceptible V. vinifera cv. Cabernet-Sauvignon. We first phenotyped its resistance to isolates of the i) M. arenaria, ii) M. incognita and iii) M. javanica species, and then to iv) two mixed Harmony-virulent Californian populations of M. arenaria and M. incognita. Finally, we created an isolate of M. arenaria and M. incognita from these Harmony populations and phenotyped the progeny to each of them [v) and vi)], and to vii) an isolate of M. ethiopica. The resistance phenotype of all the progeny’s individuals was independent of the RKN isolates or populations used. Resistance was mapped in a region of chromosome 18 in VRH8771, supporting the hypothesis that it is conferred by a single gene with an unprecedented wide spectrum in grapevine, including Harmony-virulent isolates. This dominant gene, referred to as MsppR1, is linked to the telomeric QTL XiR4 for X. index resistance from the same source. Additionally, plant mortality data showed that MsppR1-resistant material expressed a high-level resistance to the Harmony-virulent isolates. Our results are a first step towards the development of marker-assisted breeding using SSR and SNP markers for resistance to RKNs in accession VRH8771. © 2023, International Viticulture and Enology Society. All rights reserved

    Xiphinema index-resistant grapevine materials derived from muscadine are also resistant to a population of X. diversicaudatum

    Get PDF
    Grapevine is severely affected by two major nepoviruses that cause grapevine degeneration: the grapevine fanleaf virus (GFLV) and the arabis mosaic virus (ArMV), specifically transmitted by the dagger nematodes Xiphinema index and X. diversicaudatum, respectively. While natural resistance to X. index has been shown to be a promising alternative for controlling X. index and GFLV transmission, the resistance interaction between X. diversicaudatum and grapevine has not yet been documented. In the present study, we evaluated the host suitability to X. diversicaudatum in materials previously characterised for their resistance to X. index. Two X. index-resistant accessions VRH8771 (F1 hybrid) and Nemadex Alain Bouquet (BC1 hybrid) derived from muscadine, together with the X. index-susceptible reference accession V. vinifera cv. Cabernet-Sauvignon and the X. index-resistant reference accession V. riparia ‘10128’, were challenged with a X. diversicaudatum population obtained from woody host plants and a reference isolate of X. index. The reproduction factors of X. diversicaudatum and its numbers per gram of roots paralleled those of X. index, showing a resistance interaction to the population of the former species and suggesting that resistance determinants to both nematode vectors might be the same or linked. Nevertheless, these two criteria illustrated a poorer host suitability of grapevine materials to this X. diversicaudatum population than to X. index

    The Transcriptomes of Xiphinema index and Longidorus elongatus Suggest Independent Acquisition of Some Plant Parasitism Genes by Horizontal Gene Transfer in Early-Branching Nematodes.

    Get PDF
    Nematodes have evolved the ability to parasitize plants on at least four independent occasions, with plant parasites present in Clades 1, 2, 10 and 12 of the phylum. In the case of Clades 10 and 12, horizontal gene transfer of plant cell wall degrading enzymes from bacteria and fungi has been implicated in the evolution of plant parasitism. We have used ribonucleic acid sequencing (RNAseq) to generate reference transcriptomes for two economically important nematode species, Xiphinema index and Longidorus elongatus, representative of two genera within the early-branching Clade 2 of the phylum Nematoda. We used a transcriptome-wide analysis to identify putative horizontal gene transfer events. This represents the first in-depth transcriptome analysis from any plant-parasitic nematode of this clade. For each species, we assembled ~30 million Illumina reads into a reference transcriptome. We identified 62 and 104 transcripts, from X. index and L. elongatus, respectively, that were putatively acquired via horizontal gene transfer. By cross-referencing horizontal gene transfer prediction with a phylum-wide analysis of Pfam domains, we identified Clade 2-specific events. Of these, a GH12 cellulase from X. index was analysed phylogenetically and biochemically, revealing a likely bacterial origin and canonical enzymatic function. Horizontal gene transfer was previously shown to be a phenomenon that has contributed to the evolution of plant parasitism among nematodes. Our findings underline the importance and the extensiveness of this phenomenon in the evolution of plant-parasitic life styles in this speciose and widespread animal phylum

    Deciphering Resistance to Root-Knot Nematodes in Prunus for Rootstock Breeding: Sources, Genetics and Characterization of the Ma Locus

    Full text link
    Root-knot nematode (RKN) species are predominant pests of crops, attacking stone fruit crops Prunus spp. under Mediterranean climate conditions worldwide. Natural resistance for rootstock breeding is a control method that is gaining interest as an alternative to the highly toxic nematicides. This review first reports an outline of the root-knot nematodes parasitizing stone fruit crops and the Prunus species and rootstocks. It then describes the main sources of resistance detected among the Prunus germplasm and focuses on the major resistance genes identified and their characteristics (spectrum, durability, histological mechanism, effect of temperature, interaction with other pests and diseases, etc.). In peach, besides the RMia reference gene, the new genes PkMi and Mf, also located on chromosome 2, need to be characterized regarding their spectrum and relationship. The two other Prunus reference genes, Ma from plum (complete spectrum) and RMja from almond (more restricted spectrum), are orthologs that belong to a TIR-NB-LRR (TNL) cluster on chromosome 7. The review finally summarizes the positional cloning of the Ma gene and the characterization of its unique TNL structure, encompassing a five-times repeated post-LRR domain. Deciphering how this structure is functionally involved in Ma’s remarkable biological properties is a real challenge for the future

    Resistance selection and breeding of Prunus rootstocks to root-knot nematodes

    Full text link
    National audienc
    • …
    corecore