349 research outputs found
Sequence-based Anytime Control
We present two related anytime algorithms for control of nonlinear systems
when the processing resources available are time-varying. The basic idea is to
calculate tentative control input sequences for as many time steps into the
future as allowed by the available processing resources at every time step.
This serves to compensate for the time steps when the processor is not
available to perform any control calculations. Using a stochastic Lyapunov
function based approach, we analyze the stability of the resulting closed loop
system for the cases when the processor availability can be modeled as an
independent and identically distributed sequence and via an underlying Markov
chain. Numerical simulations indicate that the increase in performance due to
the proposed algorithms can be significant.Comment: 14 page
Kalman Filtering With Relays Over Wireless Fading Channels
This note studies the use of relays to improve the performance of Kalman
filtering over packet dropping links. Packet reception probabilities are
governed by time-varying fading channel gains, and the sensor and relay
transmit powers. We consider situations with multiple sensors and relays, where
each relay can either forward one of the sensors' measurements to the
gateway/fusion center, or perform a simple linear network coding operation on
some of the sensor measurements. Using an expected error covariance performance
measure, we consider optimal and suboptimal methods for finding the best relay
configuration, and power control problems for optimizing the Kalman filter
performance. Our methods show that significant performance gains can be
obtained through the use of relays, network coding and power control, with at
least 30-40 less power consumption for a given expected error covariance
specification.Comment: 7 page
Sparse Packetized Predictive Control for Networked Control over Erasure Channels
We study feedback control over erasure channels with packet-dropouts. To
achieve robustness with respect to packet-dropouts, the controller transmits
data packets containing plant input predictions, which minimize a finite
horizon cost function. To reduce the data size of packets, we propose to adopt
sparsity-promoting optimizations, namely, ell-1-ell-2 and ell-2-constrained
ell-0 optimizations, for which efficient algorithms exist. We derive sufficient
conditions on design parameters, which guarantee (practical) stability of the
resulting feedback control systems when the number of consecutive
packet-dropouts is bounded.Comment: IEEE Transactions on Automatic Control, Volume 59 (2014), Issue 7
(July) (to appear
Packetized Predictive Control for Rate-Limited Networks via Sparse Representation
We study a networked control architecture for linear time-invariant plants in
which an unreliable data-rate limited network is placed between the controller
and the plant input. The distinguishing aspect of the situation at hand is that
an unreliable data-rate limited network is placed between controller and the
plant input. To achieve robustness with respect to dropouts, the controller
transmits data packets containing plant input predictions, which minimize a
finite horizon cost function. In our formulation, we design sparse packets for
rate-limited networks, by adopting an an ell-0 optimization, which can be
effectively solved by an orthogonal matching pursuit method. Our formulation
ensures asymptotic stability of the control loop in the presence of bounded
packet dropouts. Simulation results indicate that the proposed controller
provides sparse control packets, thereby giving bit-rate reductions for the
case of memoryless scalar coding schemes when compared to the use of, more
common, quadratic cost functions, as in linear quadratic (LQ) control.Comment: 9 pages, 7 figures. arXiv admin note: text overlap with
arXiv:1307.824
Sparsely-Packetized Predictive Control by Orthogonal Matching Pursuit
We study packetized predictive control, known to be robust against packet
dropouts in networked systems. To obtain sparse packets for rate-limited
networks, we design control packets via an L0 optimization, which can be
effectively solved by orthogonal matching pursuit. Our formulation ensures
asymptotic stability of the control loop in the presence of bounded packet
dropouts.Comment: 3-page extended abstract for MTNS 2012 with 3 figure
Output feedback stable stochastic predictive control with hard control constraints
We present a stochastic predictive controller for discrete time linear time
invariant systems under incomplete state information. Our approach is based on
a suitable choice of control policies, stability constraints, and employment of
a Kalman filter to estimate the states of the system from incomplete and
corrupt observations. We demonstrate that this approach yields a
computationally tractable problem that should be solved online periodically,
and that the resulting closed loop system is mean-square bounded for any
positive bound on the control actions. Our results allow one to tackle the
largest class of linear time invariant systems known to be amenable to
stochastic stabilization under bounded control actions via output feedback
stochastic predictive control
Stabilizing Stochastic Predictive Control under Bernoulli Dropouts
This article presents tractable and recursively feasible optimization-based
controllers for stochastic linear systems with bounded controls. The stochastic
noise in the plant is assumed to be additive, zero mean and fourth moment
bounded, and the control values transmitted over an erasure channel. Three
different transmission protocols are proposed having different requirements on
the storage and computational facilities available at the actuator. We optimize
a suitable stochastic cost function accounting for the effects of both the
stochastic noise and the packet dropouts over affine saturated disturbance
feedback policies. The proposed controllers ensure mean square boundedness of
the states in closed-loop for all positive values of control bounds and any
non-zero probability of successful transmission over a noisy control channel
- …