449 research outputs found

    Revenue Incentives and Referee Propensity to Make Foul Calls in the NBA Finals

    Get PDF
    In this study I examine foul calls by NBA referees alongside the difference in aggressiveness of twelve NBA basketball teams as they compete for the Championship Title. I aim to identify referee biases that increase the likelihood of the NBA Finals ending in a later game due to league revenue incentives. My data consists of 91 individual NBA Finals games played between the 2001 and 2016 NBA Finals. After controlling for changes in play as well as the difference in aggressiveness, I find that NBA referee’s foul calls are more dependent on a call on the opposing team in situations with a larger series score spread. Additionally, I identify a consistent officiating bias towards the home team. My results imply an effort by the NBA to increase the probability of the series ending in a later game, possibly motivated by increased revenues for the league and all parties involved

    A Dark Census: Statistically Detecting the Satellite Populations of Distant Galaxies

    Get PDF
    In the standard structure formation scenario based on the cold dark matter paradigm, galactic halos are predicted to contain a large population of dark matter subhalos. While the most massive members of the subhalo population can appear as luminous satellites and be detected in optical surveys, establishing the existence of the low mass and mostly dark subhalos has proven to be a daunting task. Galaxy-scale strong gravitational lenses have been successfully used to study mass substructures lying close to lensed images of bright background sources. However, in typical galaxy-scale lenses, the strong lensing region only covers a small projected area of the lens's dark matter halo, implying that the vast majority of subhalos cannot be directly detected in lensing observations. In this paper, we point out that this large population of dark satellites can collectively affect gravitational lensing observables, hence possibly allowing their statistical detection. Focusing on the region of the galactic halo outside the strong lensing area, we compute from first principles the statistical properties of perturbations to the gravitational time delay and position of lensed images in the presence of a mass substructure population. We find that in the standard cosmological scenario, the statistics of these lensing observables are well approximated by Gaussian distributions. The formalism developed as part of this calculation is very general and can be applied to any halo geometry and choice of subhalo mass function. Our results significantly reduce the computational cost of including a large substructure population in lens models and enable the use of Bayesian inference techniques to detect and characterize the distributed satellite population of distant lens galaxies.Comment: 21 pages + appendices, 7 figures. v2: Some derivations streamlined, extended appendices. Matches version published in PR

    Effect of electrolyzed high-pH alkaline water on blood viscosity in healthy adults.

    Get PDF
    BACKGROUND: Previous research has shown fluid replacement beverages ingested after exercise can affect hydration biomarkers. No specific hydration marker is universally accepted as an ideal rehydration parameter following strenuous exercise. Currently, changes in body mass are used as a parameter during post-exercise hydration. Additional parameters are needed to fully appreciate and better understand rehydration following strenuous exercise. This randomized, double-blind, parallel-arm trial assessed the effect of high-pH water on four biomarkers after exercise-induced dehydration. METHODS: One hundred healthy adults (50 M/50 F, 31 ± 6 years of age) were enrolled at a single clinical research center in Camden, NJ and completed this study with no adverse events. All individuals exercised in a warm environment (30 °C, 70% relative humidity) until their weight was reduced by a normally accepted level of 2.0 ± 0.2% due to perspiration, reflecting the effects of exercise in producing mild dehydration. Participants were randomized to rehydrate with an electrolyzed, high-pH (alkaline) water or standard water of equal volume (2% body weight) and assessed for an additional 2-h recovery period following exercise in order to assess any potential variations in measured parameters. The following biomarkers were assessed at baseline and during their recovery period: blood viscosity at high and low shear rates, plasma osmolality, bioimpedance, and body mass, as well as monitoring vital signs. Furthermore, a mixed model analysis was performed for additional validation. RESULTS: After exercise-induced dehydration, consumption of the electrolyzed, high-pH water reduced high-shear viscosity by an average of 6.30% compared to 3.36% with standard purified water (p = 0.03). Other measured biomarkers (plasma osmolality, bioimpedance, and body mass change) revealed no significant difference between the two types of water for rehydration. However, a mixed model analysis validated the effect of high-pH water on high-shear viscosity when compared to standard purified water (p = 0.0213) after controlling for covariates such as age and baseline values. CONCLUSIONS: A significant difference in whole blood viscosity was detected in this study when assessing a high-pH, electrolyte water versus an acceptable standard purified water during the recovery phase following strenuous exercise-induced dehydration

    Use of yeast as a system to study amyloid toxicity

    Get PDF
    The formation of amyloid-like fibrils is a hallmark of several neurodegenerative diseases. How the assembly of amyloid-like fibrils contributes to cell death is a major unresolved question in the field. The budding yeast Saccharomyces cerevisiae is a powerful model organism to study basic mechanisms for how cellular pathways regulate amyloid assembly and proteotoxicity. For example, studies of the amyloidogenic yeast prion [RNQ+] have revealed novel roles by which molecular chaperones protect cells from the accumulation of cytotoxic protein species. In budding yeast there are a variety of cellular assays that can be employed to analyze the assembly of amyloid-like aggregates and mechanistically dissect how cellular pathways influence proteotoxicity. In this review, we describe several assays that are routinely used to investigate aggregation and toxicity of the [RNQ+] prion in yeast

    Properties of High-Latitude CME-Driven Disturbances During Ulysses Second Northern Polar Passage

    Get PDF
    Ulysses observed five coronal mass ejections (CMEs) and their associated disturbances while the spacecraft was immersed in the polar coronal hole (CH) flow above 70° N in late 2001. Of these CMEs, two were very fast (\u3e850 km s−1) driving strong shocks in the wind ahead, and two others were over-expanding. The two fast CMEs were observed leaving the Sun by LASCO/SOHO, and were observed in the ecliptic by Genesis and ACE. These were large events, spanning at least from the northern heliospheric pole to the ecliptic. One-dimensional hydrodynamic simulations indicate that these could be described as overpressured CMEs launched from the Sun at speeds initially faster than ambient, but then decelerating to the ambient solar wind speed as they propagated outward. The two over-expanding CMEs mark their first occurrence since Ulysses’ first orbit when such CMEs were only observed in polar CH flow

    Head-to-tail cyclization of side chain-protected linear peptides to recapitulate genetically-encoded cyclized peptides

    Get PDF
    Genetically‐encoded cyclic peptide libraries allow rapid in vivo screens for inhibitors of any target protein of interest. In particular, the Split Intein Circular Ligation of Protein and Peptides (SICLOPPS) system exploits spontaneous protein splicing of inteins to produce intracellular cyclic peptides. A previous SICLOPPS screen against Aurora B kinase, which plays a critical role during chromosome segregation, identified several candidate inhibitors that we sought to recapitulate by chemical synthesis. We describe the syntheses of cyclic peptide hits and analogs via solution‐phase macrocyclization of side chain‐protected linear peptides obtained from standard solid‐phase peptide synthesis. Cyclic peptide targets, including cyclo‐[CTWAR], were designed to match both the variable portions and conserved cysteine residue of their genetically‐encoded counterparts. Synthetic products were characterized by tandem high‐resolution mass spectrometry to analyze a combination of exact mass, isotopic pattern, and collisional dissociation‐induced fragmentation pattern. The latter analyses facilitated the distinction between targets and oligomeric side products, and served to confirm peptidic sequences in a manner that can be readily extended to analyses of complex biological samples. This alternative chemical synthesis approach for cyclic peptides allows cost‐effective validation and facile chemical elaboration of hit candidates from SICLOPPS screens

    Polypeptide transfer from Hsp40 to Hsp70 molecular chaperones

    Get PDF
    Heat shock protein 40 (Hsp40) co-chaperones assist in cellular protein folding and degradation through the binding and delivery of non-native proteins to heat shock protein 70 (Hsp70). The mechanism for substrate transfer from Hsp40s to Hsp70 is unknown. Two recent studies provide new details that shed light on novel mechanisms for substrate recognition by Hsp40s and a common mechanism for polypeptide transfer to Hsp70
    corecore