4,707 research outputs found

    Non-linear HRV analysis to quantify the effects of intermittent hypoxia using an OSA rat model

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting /republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksIn this paper, a non-linear HRV analysis was performed to assess fragmentation signatures observed in heartbeat time series after intermittent hypoxia (IH). Three markers quantifying short-term fragmentation levels, PIP, IALS and PSS, were evaluated on R-R interval series obtained in a rat model of recurrent apnea. Through airway obstructions, apnea episodes were periodically simulated in six anesthetized Sprague-Dawley rats. The number of apnea events per hour (AHI index) was varied during the first half of the experiment while apnea episodes lasted 15 s. For the second part, apnea episodes lasted 5, 10 or 15 s, but the AHI index was fixed. Recurrent apnea was repeated for 15-min time intervals in all cases, alternating with basal periods of the same duration. The fragmentation markers were evaluated in segments of 5 minutes, selected at the beginning and end of the experiment. The impact of the heart and breathing rates (HR and BR, respectively) on the parameter estimates was also investigated. The results obtained show a significant increase (from 5 to 10%, p 0.9) between these markers and BR, as well as with the ratio given by HR/BR. Although fragmentation may be impacted by IH, we found that it is highly dependent on HR and BR values and thus, they should be considered during its calculation or used to normalize the fragmentation estimatesPeer ReviewedPostprint (published version

    The effects of distributed life cycles on the dynamics of viral infections

    Full text link
    We explore the role of cellular life cycles for viruses and host cells in an infection process. For this purpose, we derive a generalized version of the basic model of virus dynamics (Nowak, M.A., Bangham, C.R.M., 1996. Population dynamics of immune responses to persistent viruses. Science 272, 74-79) from a mesoscopic description. In its final form the model can be written as a set of Volterra integrodifferential equations. We consider the role of age-distributed delays for death times and the intracellular (eclipse) phase. These processes are implemented by means of probability distribution functions. The basic reproductive ratio R0R_0 of the infection is properly defined in terms of such distributions by using an analysis of the equilibrium states and their stability. It is concluded that the introduction of distributed delays can strongly modify both the value of R0R_0 and the predictions for the virus loads, so the effects on the infection dynamics are of major importance. We also show how the model presented here can be applied to some simple situations where direct comparison with experiments is possible. Specifically, phage-bacteria interactions are analysed. The dynamics of the eclipse phase for phages is characterized analytically, which allows us to compare the performance of three different fittings proposed before for the one-step growth curve

    Comparing Fixed and Adaptive Computation Time for Recurrent Neural Networks

    Get PDF
    Adaptive Computation Time for Recurrent Neural Networks (ACT) is one of the most promising architectures for variable computation. ACT adapts to the input sequence by being able to look at each sample more than once, and learn how many times it should do it. In this paper, we compare ACT to Repeat-RNN, a novel architecture based on repeating each sample a fixed number of times. We found surprising results, where Repeat-RNN performs as good as ACT in the selected tasks. Source code in TensorFlow and PyTorch is publicly available at https://imatge-upc.github.io/danifojo-2018-repeatrnn/Comment: Accepted as workshop paper at ICLR 201
    • …
    corecore