1,872 research outputs found
Meson and baryon spectrum for QCD with two light dynamical quarks
We present results of meson and baryon spectroscopy using the Chirally
Improved Dirac operator on lattices of size 16**3 x 32 with two mass-degenerate
light sea quarks. Three ensembles with pion masses of 322(5), 470(4) and 525(7)
MeV and lattice spacings close to 0.15 fm are investigated. Results on ground
and excited states for several channels are given, including spin two mesons
and hadrons with strange valence quarks. The analysis of the states is done
with the variational method, including two kinds of Gaussian sources and
derivative sources. We obtain several ground states fairly precisely and find
radial excitations in various channels. Excited baryon results seem to suffer
from finite size effects, in particular at small pion masses. We discuss the
possible appearance of scattering states in various channels, considering
masses and eigenvectors. Partially quenched results in the scalar channel
suggest the presence of a 2-particle state, however, in most channels we cannot
identify them. Where available, we compare our results to results of quenched
simulations using the same action.Comment: 27 pages, 29 figures, 11 table
Dynamic spin-Hall effect and driven spin helix for linear spin-orbit interactions
We derive boundary conditions for the electrically induced spin accumulation
in a finite, disordered 2D semiconductor channel. While for DC electric fields
these boundary conditions select spatially constant spin profiles equivalent to
a vanishing spin-Hall effect, we show that an in-plane ac electric field
results in a non-zero ac spin-Hall effect, i.e., it generates a spatially
non-uniform out-of-plane polarization even for linear intrinsic spin-orbit
interactions. Analyzing different geometries in [001] and [110]-grown quantum
wells, we find that although this out-of-plane polarization is typically
confined to within a few spin-orbit lengths from the channel edges, it is also
possible to generate spatially oscillating spin profiles which extend over the
whole channel. The latter is due to the excitation of a driven spin-helix mode
in the transverse direction of the channel. We show that while finite
frequencies suppress this mode, it can be amplified by a magnetic field tuned
to resonance with the frequency of the electric field. In this case, finite
size effects at equal strengths of Rashba- and Dresselhaus SOI lead to an
enhancement of the magnitude of this helix mode. We comment on the relation
between spin currents and boundary conditions.Comment: 10 pages, 5 figures, added references, corrected typos, extended
section V, VI
Atmospheric observation-based global SF6 emissions - comparison of top-down and bottom-up estimates
Emissions of sulphur hexafluoride (SF6), one of the strongest greenhouse gases on a per molecule basis, are targeted to be collectively reduced under the Kyoto Protocol. Because of its long atmospheric lifetime (≈3000 years), the accumulation of SF6 in the atmosphere is a direct measure of its global emissions. Examination of our extended data set of globally distributed high-precision SF6 observations shows an increase in SF6 abundance from near zero in the 1970s to a global mean of 6.7 ppt by the end of 2008. In-depth evaluation of our long-term data records shows that the global source of SF6 decreased after 1995, most likely due to SF6 emission reductions in industrialised countries, but increased again after 1998. By subtracting those emissions reported by Annex I countries to the United Nations Framework Convention of Climatic Change (UNFCCC) from our observation-inferred SF6 source leaves a surprisingly large gap of more than 70–80% of non-reported SF6 emissions in the last decade
Quantum transport in quantum networks and photosynthetic complexes at the steady state
Recently, several works have analysed the efficiency of photosynthetic
complexes in a transient scenario and how that efficiency is affected by
environmental noise. Here, following a quantum master equation approach, we
study the energy and excitation transport in fully connected networks both in
general and in the particular case of the Fenna-Matthew-Olson complex. The
analysis is carried out for the steady state of the system where the excitation
energy is constantly "flowing" through the system. Steady state transport
scenarios are particularly relevant if the evolution of the quantum system is
not conditioned on the arrival of individual excitations. By adding dephasing
to the system, we analyse the possibility of noise-enhancement of the quantum
transport.Comment: 10 pages, single column, 6 figures. Accepted for publication in Plos
On
Ghrelin increases intake of rewarding food in rodents
We investigated whether ghrelin action at the level of the ventral tegmental area (VTA), a key node in the mesolimbic reward system, is important for the rewarding and motivational aspects of the consumption of rewarding/palatable food. Mice with a disrupted gene encoding the ghrelin receptor (GHS-R1A) and rats treated peripherally with a GHS-R1A antagonist both show suppressed intake of rewarding food in a free choice (chow/rewarding food) paradigm. Moreover, accumbal dopamine release induced by rewarding food was absent in GHS-R1A knockout mice. Acute bilateral intra-VTA administration of ghrelin increased 1-hour consumption of rewarding food but not standard chow. In comparison with sham rats, VTA-lesioned rats had normal intracerebroventricular ghrelin-induced chow intake, although both intake of and time spent exploring rewarding food was decreased. Finally, the ability of rewarding food to condition a place preference was suppressed by the GHS-R1A antagonist in rats. Our data support the hypothesis that central ghrelin signaling at the level of the VTA is important for the incentive value of rewarding food
Evaluation of α-hydroxycinnamic Acids as Pyruvate Carboxylase Inhibitors
Through a structure-based drug design project (SBDD), potent small molecule inhibitors of pyruvate carboxylase (PC) have been discovered. A series of α-keto acids (7) and α-hydroxycinnamic acids (8) were prepared and evaluated for inhibition of PC in two assays. The two most potent inhibitors were 3,3′-(1,4-phenylene)bis[2-hydroxy-2-propenoic acid] (8u) and 2-hydroxy-3-(quinoline-2-yl)propenoic acid (8v) with IC50 values of 3.0 ± 1.0 μM and 4.3 ± 1.5 μM respectively. Compound 8v is a competitive inhibitor with respect to pyruvate (Ki = 0.74 μM) and a mixed-type inhibitor with respect to ATP, indicating that it targets the unique carboxyltransferase (CT) domain of PC. Furthermore, compound 8v does not significantly inhibit human carbonic anhydrase II, matrix metalloproteinase-2, malate dehydrogenase or lactate dehydrogenase
Conductance fluctuations in diffusive rings: Berry phase effects and criteria for adiabaticity
We study Berry phase effects on conductance properties of diffusive
mesoscopic conductors, which are caused by an electron spin moving through an
orientationally inhomogeneous magnetic field. Extending previous work, we start
with an exact, i.e. not assuming adiabaticity, calculation of the universal
conductance fluctuations in a diffusive ring within the weak localization
regime, based on a differential equation which we derive for the diffuson in
the presence of Zeeman coupling to a magnetic field texture. We calculate the
field strength required for adiabaticity and show that this strength is reduced
by the diffusive motion. We demonstrate that not only the phases but also the
amplitudes of the h/2e Aharonov-Bohm oscillations are strongly affected by the
Berry phase. In particular, we show that these amplitudes are completely
suppressed at certain magic tilt angles of the external fields, and thereby
provide a useful criterion for experimental searches. We also discuss Berry
phase-like effects resulting from spin-orbit interaction in diffusive
conductors and derive exact formulas for both magnetoconductance and
conductance fluctuations. We discuss the power spectra of the
magnetoconductance and the conductance fluctuations for inhomogeneous magnetic
fields and for spin-orbit interaction.Comment: 18 pages, 13 figures; minor revisions. To appear in Phys. Rev.
A multiscale framework for disentangling the roles of evenness, density, and aggregation on diversity gradients
Ecology published by Wiley Periodicals LLC on behalf of Ecological Society of America Disentangling the drivers of diversity gradients can be challenging. The Measurement of Biodiversity (MoB) framework decomposes scale-dependent changes in species diversity into three components of community structure: species abundance distribution (SAD), total community abundance, and within-species spatial aggregation. Here we extend MoB from categorical treatment comparisons to quantify variation along continuous geographic or environmental gradients. Our approach requires sites along a gradient, each consisting of georeferenced plots of abundance-based species composition data. We demonstrate our method using a case study of ants sampled along an elevational gradient of 28 sites in a mixed deciduous forest of the Great Smoky Mountains National Park, USA. MoB analysis revealed that decreases in ant species richness along the elevational gradient were associated with decreasing evenness and total number of species, which counteracted the modest increase in richness associated with decreasing spatial aggregation along the gradient. Total community abundance had a negligible effect on richness at all but the finest spatial grains, SAD effects increased in importance with sampling effort, and the aggregation effect had the strongest effect at coarser spatial grains. These results do not support the more-individuals hypothesis, but they are consistent with a hypothesis of stronger environmental filtering at coarser spatial grains. Our extension of MoB has the potential to elucidate how components of community structure contribute to changes in diversity along environmental gradients and should be useful for a variety of assemblage-level data collected along gradients
- …