6,357 research outputs found

    Floquet Analysis of Atom Optics Tunneling Experiments

    Get PDF
    Dynamical tunneling has been observed in atom optics experiments by two groups. We show that the experimental results are extremely well described by time-periodic Hamiltonians with momentum quantized in units of the atomic recoil. The observed tunneling has a well defined period when only two Floquet states dominate the dynamics. Beat frequencies are observed when three Floquet states dominate. We find frequencies which match those observed in both experiments. The dynamical origin of the dominant Floquet states is identified.Comment: Accepted in Physical Review

    New Measurements with Stopped Particles at the LHC

    Full text link
    Metastable particles are common in many models of new physics at the TeV scale. If charged or colored, a reasonable fraction of all such particles produced at the LHC will stop in the detectors and give observable out of time decays. We demonstrate that significant information may be learned from such decays about the properties (e.g. charge or spin) of this particle and of any other particles to which it decays, for example a dark matter candidate. We discuss strategies for measuring the type of decay (two- vs three-body), the types of particles produced, and the angular distribution of the produced particles using the LHC detectors. We demonstrate that with O(10-100) observed decay events, not only can the properties of the new particles be measured but indeed even the Lorentz structure of the decay operator can be distinguished in the case of three-body decays. These measurements can not only reveal the correct model of new physics at the TeV scale, but also give information on physics giving rise to the decay at energy scales far above those the LHC can probe directly.Comment: 31 pages, 6 figures. References added, updated to reflect recent experimental results, version accepted for publication in Physical Review

    Investigating intra-host and intra-herd sequence diversity of foot-and-mouth disease virus

    Get PDF
    Due to the poor-fidelity of the enzymes involved in RNA genome replication, foot-and-mouth disease (FMD) virus samples comprise of unique polymorphic populations. In this study, deep sequencing was utilised to characterise the diversity of FMD virus (FMDV) populations in 6 infected cattle present on a single farm during the series of outbreaks in the UK in 2007. A novel RT–PCR method was developed to amplify a 7.6 kb nucleotide fragment encompassing the polyprotein coding region of the FMDV genome. Illumina sequencing of each sample identified the fine polymorphic structures at each nucleotide position, from consensus level changes to variants present at a 0.24% frequency. These data were used to investigate population dynamics of FMDV at both herd and host levels, evaluate the impact of host on the viral swarm structure and to identify transmission links with viruses recovered from other farms in the same series of outbreaks. In 7 samples, from 6 different animals, a total of 5 consensus level variants were identified, in addition to 104 sub-consensus variants of which 22 were shared between 2 or more animals. Further analysis revealed differences in swarm structures from samples derived from the same animal suggesting the presence of distinct viral populations evolving independently at different lesion sites within the same infected animal

    Understanding extreme quasar optical variability with CRTS: I. Major AGN flares

    Get PDF
    There is a large degree of variety in the optical variability of quasars and it is unclear whether this is all attributable to a single (set of) physical mechanism(s). We present the results of a systematic search for major flares in AGN in the Catalina Real-time Transient Survey as part of a broader study into extreme quasar variability. Such flares are defined in a quantitative manner as being atop of the normal, stochastic variability of quasars. We have identified 51 events from over 900,000 known quasars and high probability quasar candidates, typically lasting 900 days and with a median peak amplitude of Δm=1.25\Delta m = 1.25 mag. Characterizing the flare profile with a Weibull distribution, we find that nine of the sources are well described by a single-point single-lens model. This supports the proposal by Lawrence et al. (2016) that microlensing is a plausible physical mechanism for extreme variability. However, we attribute the majority of our events to explosive stellar-related activity in the accretion disk: superluminous supernovae, tidal disruption events, and mergers of stellar mass black holes.Comment: 25 pages, 18 figures, accepted for publication by MNRA

    A systematic search for close supermassive black hole binaries in the Catalina Real-Time Transient Survey

    Get PDF
    Hierarchical assembly models predict a population of supermassive black hole (SMBH) binaries. These are not resolvable by direct imaging but may be detectable via periodic variability (or nanohertz frequency gravitational waves). Following our detection of a 5.2 year periodic signal in the quasar PG 1302-102 (Graham et al. 2015), we present a novel analysis of the optical variability of 243,500 known spectroscopically confirmed quasars using data from the Catalina Real-time Transient Survey (CRTS) to look for close (< 0.1 pc) SMBH systems. Looking for a strong Keplerian periodic signal with at least 1.5 cycles over a baseline of nine years, we find a sample of 111 candidate objects. This is in conservative agreement with theoretical predictions from models of binary SMBH populations. Simulated data sets, assuming stochastic variability, also produce no equivalent candidates implying a low likelihood of spurious detections. The periodicity seen is likely attributable to either jet precession, warped accretion disks or periodic accretion associated with a close SMBH binary system. We also consider how other SMBH binary candidates in the literature appear in CRTS data and show that none of these are equivalent to the identified objects. Finally, the distribution of objects found is consistent with that expected from a gravitational wave-driven population. This implies that circumbinary gas is present at small orbital radii and is being perturbed by the black holes. None of the sources is expected to merge within at least the next century. This study opens a new unique window to study a population of close SMBH binaries that must exist according to our current understanding of galaxy and SMBH evolution.Comment: 29 pages, 10 figures, accepted for publication in MNRAS - this version contains extended table and figur

    A possible close supermassive black-hole binary in a quasar with optical periodicity

    Full text link
    Quasars have long been known to be variable sources at all wavelengths. Their optical variability is stochastic, can be due to a variety of physical mechanisms, and is well-described statistically in terms of a damped random walk model. The recent availability of large collections of astronomical time series of flux measurements (light curves) offers new data sets for a systematic exploration of quasar variability. Here we report on the detection of a strong, smooth periodic signal in the optical variability of the quasar PG 1302-102 with a mean observed period of 1,884 ±\pm 88 days. It was identified in a search for periodic variability in a data set of light curves for 247,000 known, spectroscopically confirmed quasars with a temporal baseline of ∼9\sim9 years. While the interpretation of this phenomenon is still uncertain, the most plausible mechanisms involve a binary system of two supermassive black holes with a subparsec separation. Such systems are an expected consequence of galaxy mergers and can provide important constraints on models of galaxy formation and evolution.Comment: 19 pages, 6 figures. Published online by Nature on 7 January 201
    • …
    corecore